(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
General introduction
Context
Thesis contributions
Thesis structure
1 Optical OFDM in future optical networks
1.1 OFDM principles
1.1.1 Mathematical description
1.1.2 Digital implementation of OFDM
1.1.2.1 System model
1.1.2.2 Cyclic prefix for OFDM
1.2 OFDM for optical communications
1.3 OFDM in short-range optical fiber communications
1.3.1 Passive optical network
1.3.1.1 Definition
1.3.1.2 OFDM for NGPON2
1.3.2 Local area network
1.3.2.1 Definition
1.3.2.2 History and challenges for optical LANs
1.3.2.3 Multimode solutions for low-cost networks
1.3.2.4 Light sources for low-cost networks
1.3.2.5 OFDM for next generation LANs
1.4 Discrete multitone modulation
1.5 Challenges for OFDM in optical networks
2 Fundamentals of optical OFDM theory
2.1 DMT-based IM/DD system model
2.2 Unipolar OFDM schemes for IM/DD systems
2.2.1 DCO-OFDM
2.2.2 ACO-OFDM
2.2.3 PAM-DMT
2.2.4 BER performance
2.2.5 Optical power efficiency
3 Hermitian symmetry free optical OFDM
3.1 Hermitian symmetry in optical OFDM
3.2 DHT-based optical OFDM
3.3 Flip-OFDM
3.4 Hermitian symmetry free OFDM
3.4.1 System model
3.4.2 PAPR and BER performance
3.4.2.1 PAPR
3.4.2.2 Signal to noise ratio
3.4.2.3 Bit error rate
3.4.3 Channel equalization
3.4.3.1 Flip-OFDM
3.4.3.2 HSF-OFDM
3.4.4 Computational complexity
3.5 Hermitian symmetry free Flip-OFDM
3.5.1 System model
3.5.2 Bit error rate
4 Asymmetrically Companded DCO-OFDM
4.1 Overview of optical power efficient DMT systems
4.1.1 Asymmetrically clipped DC biased optical OFDM
4.1.1.1 Transmitter model
4.1.1.2 Receiver model
4.1.2 Hybrid asymmetrically clipped optical OFDM
4.1.3 Pilot-assisted modulation
4.1.4 Discussion and conclusion
4.2 The companding concept in OFDM systems
4.3 Asymmetrically companded DCO-OFDM
4.3.1 System model
4.3.2 Companding function
4.4 Simulation results
4.4.1 Clipping noise reduction
4.4.2 BER as a function of Eb(elec)/N0
4.4.3 Optical power efficiency
5 Experimental investigation of DMT for cost-sensitive networks
5.1 VCSEL characterization and modeling
5.1.1 Static characteristic
5.1.2 Quasi-static characteristic
5.1.3 VCSEL nonlinearity modeling
5.2 Simulation results
5.2.1 Optical link model
5.2.2 Optical noise components
5.2.3 Nonlinearity and clipping distortions
5.3 Measurements
5.3.1 Back to back measurements
5.3.1.1 Inverse sinc compensation
5.3.1.2 Channel equalization
5.3.2 Optical link characterization
5.3.3 Experimental validation of VCSEL non-linear model
5.3.4 Companded DCO-OFDM
General conclusion
Appendix A The AWG impact on the DMT signal
A.1 AWG without interleave function
A.2 AWG with interleave function
List of Publications
French thesis summary
Introduction
5.3 Fondamentaux de l’OFDM optique
5.3.1 Syst`eme IM/DD
5.3.2 DCO-OFDM
5.3.3 ACO-OFDM
5.3.4 Comparaison des deux techniques
5.3.4.1 BER
5.3.4.2 Puissance optique
5.4 L’OFDM optique sans sym´etrie hermitienne
5.4.1 La sym´etrie hermitienne dans les syst´emes OFDM optiques
5.4.2 HSF-OFDM
5.4.3 HSF-Flip-OFDM
5.5 DCO-OFDM asym´etriquement compress´ee
5.5.1 Principe
5.5.2 La fonction de companding
5.5.3 R´esultats de simulations
5.5.3.1 BER
5.5.3.2 Puissance optique
5.6 Exploration exp´erimentale de la DMT pour les r´eseaux `a bas coˆut
5.6.1 L’impact du VCSEL sur la modulation DMT
5.6.1.1 La caract´erisation quasi-statique du VCSEL
5.6.1.2 R´esultats de simulation
5.6.1.3 Validation exp´erimentale
5.6.2 DCO-OFDM compress´ee
Conclusion
Bibliography




