(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1 Problem Statement
1.1.1 Background
1.1.2 Hypothesis and objective
1.2 Dissertation Overview
1.3 Findings and Outcomes/Originality
References:
Chapter 2 Alkali ion batteries (AIBs): Operating mechanism and key parameters
2.2 Current progress of anode materials
2.2.1 Insertion electrodes
2.2.2 Conversion electrodes
2.2.3 Alloying electrodes
2.3 Metal Oxides as Next Generation Anode
References:
Chapter 3 Selection of methods and materials
3.2 Principle behind synthesis methods
3.2.1 Co-precipitation
3.2.2 Laser Pyrolysis
3.3 Principle behind characterization techniques
3.3.1 X-Ray Diffraction (XRD)
3.3.2 Electron Microscopy (SEM & TEM)
3.3.3 Energy Dispersive X-ray Spectroscopy (EDX)
3.3.4 X-ray Photoelectron Spectroscopy (XPS)
3.3.5 Raman spectroscopy
3.3.6 Thermogravimetric analysis
3.3.7 Synchrotron X-ray Absorption Spectroscopy (XAS)
3.4 Principle behind electrochemical methods
3.4.1 Coin cell fabrication
3.4.2 Ex-situ measurements
3.4.3 Galvanostatic cycling
3.4.4 Cyclic voltammetry
References:
Chapter 4 Synthesis
4.2.1 Chemicals
4.2.2 Laser pyrolysis for synthesis of SnO2 and rGO- SnO2
4.3 Physical characterization
4.4 Electrochemical measurements
4.4.1 Cyclic voltammetry
5.4.2 Galvanostatic cycling
5.5 Summary
References:
Chapter 5
5.1 Introduction
5.2 Synthesis
5.2.1 Chemicals
5.2.2 Laser pyrolysis
5.3 Physical characterization
5.4 Electrochemical measurements
5.4.1 Cyclic Voltammetry
5.4.2 Galvanostatic cycling
5.4.3 Power law analysis
5.5 Ex-situ synchrotron studies
5.6 Summary
References:
Chapter 6
6.1 Introduction
6.2 Synthesis
6.2.1 Chemicals
6.2.2 Co-precipitation synthesis
6.3 Physical characterization
6.4 Electrochemical measurements
6.4.1 Cyclic Voltammetry
6.4.2 Galvanostatic cycling
6.5 Summary
References:
Chapter 7
7.1 Impact of findings
7.1.1 Outcome of hypothesis 1:
7.1.2 Outcome of hypothesis 2:
7.1.3 Outcome of hypothesis 3:
7.2 Outstanding questions and future work
7.2.1 Investigation onto the gradual capacity decay during initial lithiation cycles
7.2.2 Further explore the different types of substitution metal for ASnO3 with other cations in the A site
7.2.3 Laser pyrolysis of bimetallic tin oxides for LIB and NIB
7.2.4 Assembly of full cell
APPENDIX



