(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1. INTRODUCTION
2. CONSTRUCTED WETLANDS
2.1. SUBSURFACE CW
2.1.1. VERTICAL-FLOW
2.1.2. HORIZONTAL FLOW
2.2. FILTER COMPONENTS AND THEIR ROLES
2.2.1. THE ROLE OF PLANTS
2.2.2. MICROORGANISMS
2.3. DRY PERIOD/STORMWATER RUNOFF TREATMENT BY VFCW
2.3.1. DRY PERIODS
2.3.2. STORMWATER
2.3.3. IMPACT OF RAIN EVENTS ON FILTER BEHAVIOUR
2.4. VFCW DYNAMICS
2.4.1. HYDRODYNAMICS ON VFCWS
2.4.2. OXYGEN TRANSFER
2.4.3. CLOGGING
2.5. HYDRAULIC LOAD AND PERFORMANCE LIMITS
2.6. HYDRODYNAMIC MODELLING OF VFCW
2.6.1. HYDRAULIC APPROACH
2.6.2. MECHANISTIC MODELS
2.6.3. SIMPLIFIED MODELS
2.7. A SIMPLIFIED MODEL AS A DECISION-SUPPORT TOOL
3. MATERIAL AND METHODS
3.1. EXPERIMENTAL SITE
3.1.1. CHALLEX CATCHMENT
3.1.2. FULL-SCALE MONITORING
3.1.3. HYDRAULIC MONITORING
3.1.4. TREATMENT PERFORMANCES MONITORING
3.2. HYDRAULIC MODELLING
3.2.1. MODELLING OBJECTIVES
3.2.2. SIMPLIFIED MODEL
3.2.3. HYDRUS MODELLING
3.2.4. SIMPLIFIED MODEL AND FACTORS INFLUENCING HYDRAULIC ACCEPTANCE
3.2.5. SEWER SYSTEM MODELLING
3.2.6. LOCAL CONTEXT AND FILTER DESIGN
4. FILTER’S DYNAMICS
4.1. HYDRAULIC OF THE FILTER
4.1.1. TDR CAMPAIGNS
4.1.2. INFILTRATION VELOCITY
4.1.3. TRACER TESTS
4.2. SIMPLIFIED HYDRAULIC MODELLING
4.2.1. INFILTRATION CAPACITY PARAMETER AND INFLUENCING FACTORS
4.2.2. COMPARISON WITH HYDRUS
4.3. CONCLUSIONS ON THE FILTER DYNAMICS STUDY
5. FILTERS PERFORMANCES
5.1. WASTEWATER CHARACTERISTICS
5.2. TREATMENT PERFORMANCES
5.2.1. SS AND TOTAL COD
5.2.2. KN REMOVAL EFFICIENCIES
5.2.3. BOD5 AND DISSOLVED COD
5.3. GOD (GLOBAL OXYGEN DEMAND)
5.4. INTENSE TREATMENT PERFORMANCE CAMPAIGN
5.5. CONTINUOUS MONITORING BY S::CAN PROBE
5.6. ALERTS CRITERIA / BIOLOGICAL LIMITS
5.6.1. ESTABLISHING THE DYSFUNCTION ALERTS
6. LONG TERM MODELLING (RAINFALL TIME-SERIES)
6.1. THREE-COMPONENT MODEL
6.2. SENSITIVITY ANALYSIS
6.2.1. LOCAL CONTEXT INFLUENCE ON FILTER (FLOW AND PONDING)
6.2.2. PLANT INLET BYPASS LEVEL AND DISCHARGE
6.2.3. INFLUENCE OF CSO THRESHOLD ON PONDING TIME ALERTS AND BYPASS DISCHARGES
6.2.4. INFLUENCE OF FILTER SURFACE AND BYPASS HEIGHT ON PONDING TIME ALERTS AND BYPASS DISCHARGES
6.2.5. INFLUENCE OF FILTER SURFACE, BYPASS HEIGHT AND FILTER AGE ON PONDING TIME ALERTS AND BYPASS DISCHARGES
6.3. CHARACTERISTICS OF ALERTS AND DISCHARGES IN VFCW CONFIGURATIONS THAT RESPECT THE LIMITS
6.4. POSSIBLE DESIGN RECOMMENDATIONS
6.5. SHORT GUIDE FOR THE DESIGNER
7. CONCLUSIONS
7.1. BIBLIOGRAPHY
7.2. METHODS
7.3. LARGE-SCALE VFCW HYDRAULICS
7.4. TREATMENT PERFORMANCES
7.5. MODELLING RESULTS
8. PERSPECTIVES


