(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter I General introduction and strategy
1. Industrial context
2. Strategy and research question
3. References
Chapter II Bibliography
1. Aqueous foams
1.1. Foam structure and structural changes due to destabilisation processes
1.2. Stabilising agents and their contribution to foam properties
2. Protein structure
2.1. Proteins and their sensitivity to environment and processing
2.2. Dairy proteins
3. Multiscale approach about whey proteins foams
3.1. Relationships between whey protein structure and foam properties
3.2. Relationships between whey protein structure and interfacial properties
3.3. Relationships between whey protein interfacial and foam properties
4. References
Chapter III Materials and Methods
1. Materials
2. Preparation of dry-heated powders
2.1. Sample preparation
2.2. Experimental design
3. Structural properties
3.1. Size-exclusion high-performance liquid chromatography
3.2. Reversed-phase high-performance liquid chromatography
3.3. Mass spectrometry
4. Foam properties
4.1. Foam formation and drainage rate
4.2. Foam formation and rheometry
5. Interfacial properties
5.1. Dynamic drop tensiometry and interfacial dilatational rheometry
5.2. Shear interfacial rheology
6. Film dynamics
7. Statistical analysis
7.1. Principal Component Analysis
7.2. Analysis of Variance
7.3. Tukey contrast
7.4. Spearman correlations
8. References
Chapter IV Screening of dry-heating parameters and characterisation of the foam stability against drainage
1. How foam stability against drainage is affected by conditions of prior whey protein powder storage and dry-heating: a multidimensional experimental approach
1.1 Introduction
1.2 Materials and Methods
1.3 Results
1.4 Discussion
1.5 Conclusions
1.6 Acknowledgements
1.7 Supplementary data
2. Complementary studies
2.1 Observation of coalescence avalanche
2.2 Interfacial shear rheology
3. References
Chapter V Structural consequences of whey protein dry-heated under controlled physicochemical conditions and relationships with foam stability
1. Structural changes of whey proteins upon dry-heating under controlled physicochemical conditions and relationships with foam stability
1.1. Introduction
1.2. Materials and Methods
1.3. Results
1.4. Discussion
1.5. Conclusions
1.6. Acknowledgements
1.7. Supplementary data
2. Complementary studies
2.1. Mass spectrometry of pre-conditioned WPI
2.2. Mass-spectrometry of pre-conditioned β-lg
3. References
Chapter VI Interfacial properties, film dynamics and foam properties: a multi-scale approach to dairy protein foams
1. Interfacial properties, film dynamics and bulk rheology: a multi-scale approach to dairy protein foams
1.1. Introduction
1.2. Materials and Methods
1.3. Results
1.4. Discussion
1.5. Conclusions
1.6. Acknowledgements
1.7. Supplementary data
2. Complementary studies
2.1. Disproportionation exponents
2.2. Differential effect on protein aggregation for β-lg and WPI
2.3. Interfacial properties and stability against drainage of foams obtained by bubbling
2.4. Interfacial and foam properties: comparison with surfactant and protein controls
3. References
Chapter VII General discussion & perpectives
1. Discussion
1.1. Une approche multifactorielle pour contrôler et exploiter la variabilité
1.2. De petites modifications structurales des protéines induisent des changements radicaux des propriétés interfaciales et moussantes
1.3. Rhéologie interfaciale et dynamique des mousses
1.4. La rhéologie des mousses, une méthode plus sensible à la rhéologie interfaciale que l’étude du
drainage
1.5. Spécificités des mousses de protéines et importance de la dynamique
1.6. Multi-dimensionnalité des propriétés des mousses et impact des procédés
2. Perspectives
2.1. L’étude des T1, une voie originale pour la caractérisation des mousses de protéines
2.2. Pour aller plus loin dans les mécanismes liés aux procédés
2.3. Applications industrielles
3. Conclusions
4. Références



