(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Introduction
1.1 Earth as a construction material
1.2 Rammed earth
1.2.1 Advantages and limitation of earthen structures
1.3 Thesis objective and outline
2 Literature review
2.1 Key mechanical parameters
2.2 Factors influencing the mechanical characteristics
2.2.1 Sample geometry and scale
2.2.2 Granulometry
2.2.3 Clay content and nature
2.2.4 Dry density and method of compaction
2.3 Suction as a variable for describing water state
2.4 Modelling of Rammed earth
2.4.1 Damage models
2.4.2 Elasto-plasticity models
2.4.3 Coupled analysis
2.5 Conclusion
3 Hydro-mechanical behavior at material scale
3.1 Introduction
3.2 Geotechnical characterization of the material
3.2.1 Particle size distribution
3.2.1.1 Sieve Analysis
3.2.1.2 Sedimentation Analysis
3.2.2 Atterberg limits
3.2.3 Other characterization tests
3.3 Sample Preparation
3.3.1 Proctor compaction test
3.3.2 Double Compaction
3.4 Hydric conditions
3.4.1 Suction
3.4.2 Soil water retention curve (SWRC)
3.4.3 Control of suction
3.4.3.1 Liquid-vapor equilibrium method
3.4.3.2 Axis translation technique
3.4.4 Hydric properties of rammed earth
3.4.4.1 Soil water retention curve
3.4.4.2 Hydraulic conductivity
3.4.5 Conditioning of samples
3.5 Influence of suction on mechanical parameters
3.5.1 Unconfined compressive strength test
3.5.2 Direct shear tests: Influence of suction on shear parameters
3.5.3 Unsaturated triaxial tests
3.5.4 Intrinsic shear parameters
3.6 Towards constitutive modeling
3.7 Conclusion
4 Experiments and simulation at structural scale on columns
4.1 Introduction
4.2 Experimental study
4.2.1 Material
4.2.2 Experimental Protocol
4.2.2.1 Sample Preparation
4.2.2.2 Sensor calibration and layout
4.2.3 Results of the drying phase
4.2.4 Unconfined compression test on columns
4.2.4.1 Experimental procedure
4.2.4.2 Results of the compression test
4.3 Numerical analysis
4.3.1 Theoretical aspects of CODE_BRIGHT
4.3.1.1 Balance equations
4.3.1.2 Constitutive equations and equilibrium restrictions
4.3.2 Material parameters
4.3.2.1 Hydro-thermal parameters
4.3.2.2 Mechanical parameters
4.3.3 Numerical simulations of drying phase
4.3.3.1 Initial conditions and boundary conditions
4.3.3.2 Drying phase simulation results
4.3.4 Numerical simulations of compression phase
4.3.4.1 Initial state and boundary conditions
4.3.4.2 Compression phase simulation results
4.4 Conclusions and Perspective
5 Case study: THM coupled simulations of rammed earth walls
5.1 Introduction
5.2 General considerations for the simulations
5.2.1 Failure envelope
5.2.2 Environmental conditions
5.3 Single Wall
5.3.1 Compression of wall at compaction hydric state
5.3.2 Drying in warm conditions
5.3.3 Drying in cold conditions
5.4 Two walls joined at right angle
5.5 Conclusion and Perspective
6 Conclusions and perspectives
7 Synthèse
7.1 Etude expérimentale à l’échelle du matériau
7.1.1 Test de résistance à la compression non confiné (UCS)
7.1.2 Essai de cisaillement direct (DST)
7.1.3 Test triaxial non saturé
7.1.4 Test triaxial saturé
7.1.5 Vers une modélisation constitutive
7.2 Etude expérimentale à l’échelle structurelle sur colonnes
7.2.1 Comportement au séchage
7.2.2 Comportement de compression
7.3 Simulation du comportement de séchage et de compression des colonnes de pisé
7.3.1 Simulation de phase de séchage
7.3.2 Simulation de phase de compression
7.4 Étude de cas: simulations couplées THM de murs en pisé


