(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Introduction
I. Background
I.1. Structure of the reference population
I.1.A. Extent of LD
I.1.B. Levels of relationship within reference population
I.2. Multi breeds or multi populations reference population
I.2.A. Using several populations
I.2.B. Using several breeds
I.2.B.a. In dairy cattle
I.2.B.b. In beef cattle
I.2.C. Several models to use multi-breed reference population
I.1. Use of female genotypes
I.2. Phenotypes used
II. Material and methods
II.1. Reference population in French Alpine and Saanen goats
II.1.A Description of popQTL and popIA population structures
II.1.B Phenotypes available
II.1.B.a. YD and DYD
II.1.B.b. Weight of phenotypes
II.1.C Genotypes of the reference population
II.1.C.a. Genotypes available
II.1.C.a. Calculation of LD extent and persistence of LD between breeds
II.1.C.b. Simulation of bucks genotyped
II.2. Prediction of GEBV
II.2.A. Prediction of GEBV accuracy
II.2.B. Estimation of GEBV
II.2.B.a. GBLUP
II.2.B.a. Calculation of accuracy
II.2.B.b. Cases studied
III. Results and discussion
III.1. Structures of the two populations genotyped
III.1.A. PopQTL
III.1.B. PopIA
III.2. LD extent in the population genotyped
III.2.A. LD within the population
III.2.B. Persistence of LD between Alpine and Saanen goats
III.3. Simulation of bucks genotypes
III.4. Prediction of GEBV accuracy level
III.4.A. In functions of the heritability and population size
III.5.A. Function of LD extent
III.5. Results on genomic evaluation results could indicate that these males are homozygote for a QTL concerning SCS. But further analyses are needed.
III.5.A. Effect of population size on GEBV accuracy
III.5.B. Interest of female genotypes
III.5.C. Interest of genomic selection
Conclusion
Acknowledgements
References




