(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Introductory chapter
Context and motivation
Research questions and objectives of the thesis
Description of the chapters
Chapter I: An economic comparison of adaptation strategies towards a drought-induced risk of forest dieback
1. Introduction
2. Material and methods
2.1. Some definitions
2.1.1. Characterization of drought and risk
2.1.2. Adaptation strategies
2.2. Case study
2.2.1. Case study area: Burgundy region
2.2.2. Species of interest
2.2.3. Study scenarios
2.3. Methods
2.3.1. Simulation of forest growth and silvicultural treatments
2.3.2. Economic approach
3. Results
3.1. Forest growth and mortality
3.2. Economic comparison
3.3. Carbon sequestration
4. Discussion
4.1. Adaptation from an economic perspective
4.2. Carbon consideration
4.3. Sensitivity analysis
4.4. Limits and perspectives
5. Conclusion
Supplementary material
A. Silvicultural operations with associated net benefits from wood production and carbon sequestration for each scenario
B. Supplementary data
Chapter II: Is diversification a good option to reduce drought-induced risk of forest dieback? An economic approach focused on carbon accounting
1. Introduction
2. Material and methods
2.1. Study area: Grand-Est region and species of interest
2.2. Methods
2.2.1. Scenarios tested
2.2.2. Forest growth simulation
2.2.3. Economic analysis
2.2.3.1. Double-weighted land expectation value
2.2.3.2. Carbon price scenarios
3. Results
3.1. Effect of drought recurrence on optimal rotation length, tree mortality, carbon sequestration, and LEV
3.2. Effect of diversification and combined diversification on optimal rotation length, tree mortality, carbon sequestration and LEV
3.3. Effect of carbon price on optimal rotation length and LEV
4. Discussion
4.1. Diversification is a good adaptation option to reduce drought-induced risk of forest dieback from an economic perspective
4.2. Diversification and combining both diversification strategies lead to synergies
4.3. Financial balance vs. carbon balance
4.4. Valorising carbon decreases the optimal rotation length and increases LEV
4.5. Limits and perspectives of the study
5. Conclusion
Supplementary material
A. Drought recurrences definition
B. Creation of fictive stands
C. Simulation of forest management
D. MATHILDE and CAT
E. Land expectation value and sensitivity analysis of discount rate
F. Synergy analysis of adaptation strategies
Chapter III: Composition diversification vs. structure diversification: How to conciliate timber production and carbon sequestration objectives under drought and windstorm
1. Introduction
2. Material and methods
2.1. Study area: Drought and windstorm in the Grand-Est region and species of interest
2.2. Methods
2.2.1. Scenarios tested
2.2.2. Forest growth simulation and economic analysis
3. Results
3.1. Effect of drought and/or windstorm recurrence on timber volume, carbon sequestration, tree mortality, and LEV
3.2. Effect of adaptation strategies on timber volume, carbon sequestration, tree mortality, and LEV
3.3. Effect of carbon price and discount rate on LEV
4. Discussion
4.1. Diversification can be an economically effective adaptation strategy to reduce drought- and windstorm-induced risks
4.2. Considering both risks impacts the results and recommendations compared to investigating each risk separately
4.3. Diversifying the stand as well as combining both strategies lead to synergies
4.4. Valorising carbon increases forest value
5. Conclusion
Supplementary material
A. Windstorm frequencies computation
B. MATHILDE and CAT
C. Sensitivity analysis of the discount rate on LEV
D. Synergy analysis of adaptation strategies
Chapter IV: Index insurance for coping with drought-induced risk of production losses in French forests
1. Introduction
2. Literature review
3. Material and methods
3.1. Data
3.2. Insurance policy design
3.2.1. Indemnity schedule
3.2.2. Tested indices
3.2.3. Optimisation of insurance contract
4. Results
5. Discussion and perspectives
5.1. Optimal insurance contracts generate low gain, high compensation and a high basis risk
5.2. Including a regional differentiation on the species-specific insurance contract can improve the results
5.3. Other perspectives of the study
6. Conclusion
Supplementary material
A. Optimal insurance contract and effectiveness criteria of the insurance contract (relative risk aversion coefficient of 1)
B. Optimal insurance contract and effectiveness criteria of the insurance contract (relative risk aversion coefficient of 0.5)
C. Optimal insurance contract and effectiveness criteria of the insurance contract (relative risk aversion coefficient of 2)
Conclusion
Summary of the main results
Conceptual contributions
Methodological contributions
Public policies issues
Future research
French summary of the thesis
Contexte et motivation
Description des chapitres
Principaux résultats et conclusion


