Dynamics of organic matter in soils

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Introduction
References
Chapter 1. Literature Review
1. Soil organic matter in croplands
1.1. Agronomic role and environmental concern
1.2. Dynamics of organic matter in soils
1.3. Modelling carbon and nitrogen cycle from SOM turn over
1.4. The CERES-EGC/NCSOIL model
1.4.1. The CERES-EGC model
1.4.2. The NCSOIL model
2. Exogenous organic matter use in agriculture
2.1. EOM definition and sources of production
2.2. Regulatory framework of EOM use: the French case
2.2.1. EOM legal qualification as « waste», « by-product» ou « product»
2.2.2. EOM legal qualification
2.2.3. EOM use
2.3. EOM agronomic interests and environmental impact
2.3.1. EOM capacity to increase SOM, amending potential
2.3.2. EOM capacity to substitute mineral fertilisers
2.3.3. Potential environmental impacts
2.3.4. Modelling and parameterising EOM
3. Spatial distribution and temporal evolution of soil organic matter at the regional scale
3.1. Mapping soil organic matter and parameters driving its fate
3.1.1. Mapping methodology
3.1.2. Mapping issues
3.1.3. Mapping methods used
3.2. Spatially-explicit EOM impacts on C and N for regional concerns
3.3. Regional EOM management
4. Conclusion and objectives
5. Supplementary data
6. References
Présentation du territoire d’étude
Références
Chapter 2. Modelling the long-term effect of urban waste compost applications on carbon and nitrogen dynamics in temperate cropland
1. Abstract
2. Introduction
3. Materials and methods
3.1. The QualiAgro long-term experiment
3.2. EOM characterisation
3.2.1. Physico-chemical analysis and biochemical fractionation
3.2.2. C and N mineralisation under laboratory controlled conditions
3.3. Model description
3.3.1. CERES-EGC model
3.3.2. NCSOIL model
3.4. Model parameterisation
3.4.1. CERES-EGC parameterisation for the QualiAgro experiment
3.4.2. NCSOIL parameterisation
3.4.3. Evaluation of model goodness of fitting
4. Results
4.1. Initial parameterisation of Pool II
4.1.1. Estimation of initial Pool II size with CERES-EGC
4.1.2. Estimation of Pool II C/N ratio with NCSOIL
4.2. EOM parameterisation based on lab-scale results and simulations with NCSOIL
4.2.1. Results obtained from the NLR procedure
4.2.2. Variation of C and N mineralisation with the EOM origin
4.2.3. Goodness of fitting of simulated EOM kinetics of mineralisation
4.3. Field-scale CERES-EGC simulations over a 13 y-time series
4.3.1. Soil organic matter
4.3.2. Crop yield and N uptake
4.3.3. Soil mineral N
4.3.4. N leaching
4.3.5. N fluxes and balances
5. Discussion
5.1. Relevancy of NCSOIL parameterisation methods
5.2. Scale-transfer between lab NCSOIL parameterisation and CERES-EGC long-term field simulations
5.3. Impacts of EOM applications
6. Conclusion
7. Supplementary data
8. References
Chapter 3. Parameterisation of the NCSOIL model to simulate C and N short-term mineralisation of exogenous organic matters in different soils
1. Abstract
2. Introduction
3. Materials and methods
3.1. Soils and EOM
3.1.1. Soils
3.1.2. Exogenous Organic Matters
3.1.3. Incubation experiments
3.2. Modelling
3.2.1. The NCSOIL model
3.2.2. Model parameterisation
3.2.3. statistical evaluation of soil effect on EOM mineralisation
3.2.4. Factor analysis: relation between EOM parameters and characteristics
4. Results
4.1. Variation of C mineralisation kinetics of EOM with soil type
4.2. Classification of EOM for kEOM parameterisation
4.3. Simulation of EOM mineralisation
4.3.1. EOM mineralisation behaviours
4.3.2. Appropriateness of parameterisation methods
4.3.3. EOM characterisation requiring another parameterisation approach
4.4. Use of Van Soest fractionation for parameters and group characterisation
5. Discussion
5.1. Parameterisation methods
5.2. General scheme for relating model parameters to measured values
5.3. EOM types available in the “Plain of Versailles” region
6. Conclusion
7. Supplementary data
8. References
Chapter 4. Regional-scale scenarios of organic amendment use on cropped soils: impacts on soil organic carbon stocks and substitution of mineral fertilisation simulated with the CERES-EGC crop model
1. Abstract
2. Introduction
3. Materials and methods
3.1. Study Area
3.2. Set of geographical layers included in the modelling
3.3. Characterisation of regional EOM
3.4. The CERES-EGC model: overall presentation, parameterisation and running
3.4.1. The CERES-EGC model
3.4.2. The NCSOIL model
3.4.3. Model parameterisation
3.5. Building scenarios of EOM application for each cropping system
3.5.1. Crop residues and intercrops
3.5.2. EOM applications
3.5.3. Crop succession constraints for EOM application
3.6. Insertion of mineral N saving in the modelling
3.6.1. Principle
3.6.2. Some additional rules
3.7. Running the model
3.8. Analysis of the factors driving carbon storage, nitrogen saving and nitrate leaching
4. Results
4.1. EOM characteristics and consequences on their insertion in scenarios
4.2. C storage
4.2.1. C storage drivers
4.2.2. Differences in C storage
4.3. N savings
4.3.1. N savings drivers
4.3.2. Differences in N savings
4.4. Nitrate leaching
4.4.1. Nitrate leaching drivers
4.4.2. Differences in N Leaching
5. Discussion
5.1. Simulations of C and N cycles
5.2. Nitrogen Savings and other impacts
5.3. Uncertainties and how to reduce them
5.4. Feasibility of EOM use scenarios at crop plot and regional scale
6. Conclusion
7. Supplementary data
8. References
Chapter 5. Optimisation of Exogenous Organic Matter use by agriculture at the regional scale: case study of a peri-urban area near Paris, France
1. Abstract
2. Introduction
3. Material & methods
3.1. Study area
3.2. Spatially-explicit simulations of EOM applications
3.2.1. Spatially-explicit data for model parameterisation
3.2.2. Scenario simulations of EOM use
3.2.3. Simulations with the CERES-EGC crop model
3.3. Optimisation of EOM distribution
3.3.1. Preparation of optimisation entries
3.3.2. Optimisation model
3.3.3. EOM availability situations
3.3.4. Optimisation results analysis
4. Results
4.1. EOM availability situations
4.2. Potential impacts related to EOM use at the regional scale
4.2.1. Optimised distributions of current EOM (situation A)
4.2.2. Impact of composting development (situation B)
4.2.3. Impacts on NH3, N2O and N2
4.3. EOM distributions
4.3.1. EOM distribution per soil types
4.3.2. EOM distribution per crop succession
4.3.3. EOM application concentration
4.3.4. Spatial patterns of EOM distribution
5. Discussion
5.1. Regional strategies for EOM management
5.2. Regional potential benefits and risks
5.3. Method reproducibility
5.4. Multi-criteria analysis
5.5. Applicability
6. Conclusion
7. Supplementary data.
8. References
Discussion générale et conclusion
Perspectives
References

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *