Vehicle chassis modeling

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
1.1 Background
1.2 Solutions
1.2.1 Technological solutions
1.2.2 Energy ecient utilization
1.3 Thesis contribution
1.4 Thesis overview
2 Literature Review 
2.1 Eco driving support systems
2.1.1 Informative systems
2.1.2 Advisory systems
2.1.2.1 Advanced Driver Assistance Systems (ADAS)
2.1.2.2 Post-trip support systems
2.1.3 Conclusion
2.2 Optimal vehicle operation
2.2.1 Rule based evaluation
2.2.2 Trajectory optimization
2.2.3 Road vehicles
2.2.4 Railroad vehicles
2.2.5 Conclusion
2.3 Conclusion
3 Vehicle Modeling 
3.1 Direct and inverse modeling
3.2 Vehicle chassis modeling
3.2.1 Dynamics of chassis
3.2.2 Resistance forces
3.3 Conventional vehicle
3.3.1 Drive train modeling
3.3.2 Engine modeling
3.4 Electric vehicle
3.4.1 Drive train modeling
3.4.2 Modeling of electric components
3.5 Hybrid Vehicle
3.5.1 Hybrid vehicle drive trains
3.5.2 Toyota Prius hybrid vehicle
3.5.2.1 Prius control strategy
3.6 Dynamic vehicle simulation with Vehlib
3.7 Conclusion
4 Optimization 
4.1 Problem denition
4.1.1 Optimization objective
4.1.2 Optimization constraints
4.2 Single-objective optimization
4.2.1 Three dimensional dynamic programming
4.2.2 Two dimensional dynamic programming
4.2.2.1 Mapping of weighting factor
4.2.2.2 Nested evaluation of weighting factor
4.2.3 Conclusion
4.3 Multi-objective optimization
4.3.1 Multiobjective dynamic programming
4.3.1.1 Truncation method
4.3.2 A simple example
4.3.2.1 Comparison of the two optimization methods
4.3.2.2 Trade-o between energy consumption and trip time
4.4 Sensitivity analysis
4.5 Conclusion
5 Potential Gains of Eco Driving 
5.1 Conventional vehicle
5.1.1 The ideal velocity trajectory
5.1.2 Verication on engine test bench
5.1.3 Analysis
5.1.4 Important factors for conventional vehicle eco driving
5.1.5 Eect of road grade
5.2 Electric vehicle
5.2.1 The ideal velocity trajectory
5.2.2 Verication on chassis test bench
5.2.3 Analysis
5.2.4 Important factors for electric vehicle eco driving
5.3 Hybrid vehicle
5.3.1 Hybrid vehicle optimization
5.3.2 The consumption of a hybrid vehicle
5.3.3 The ideal velocity trajectory
5.4 Conclusion
6 Constraint integration: Trac and Emissions 
6.1 Eco driving with trac constraints
6.1.1 Trip specication
6.1.2 Optimization constraints
6.1.3 Optimization Method
6.1.4 Results
6.1.5 Conclusion
6.2 Eco driving with environmental constraints
6.2.1 Optimization
6.2.2 Experimental Setup
6.2.3 Economic vehicle operation
6.2.4 Ecologic vehicle operation
6.2.4.1 Emission integration
6.2.4.2 Results and comparison
6.2.5 Conclusion
6.3 Conclusion
7 A Driver Assist System for Eco Driving 
7.1 Driving simulator
7.1.1 Vehicle simulation
7.1.2 Simulator environment and communication
7.2 Advanced Driver Assist System (ADAS)
7.2.1 ADAS algorithm
7.2.1.1 Control logic
7.2.1.2 Optimization and Advice Evaluation
7.2.2 Human Machine Interface (HMI)
7.2.2.1 Continuous display
7.2.2.2 Educational display
7.3 Experimentation
7.3.1 Experimental setup
7.3.2 Results
7.3.2.1 Gains in fuel consumption
7.3.2.2 Driver inuence on eco driving gain
7.3.2.3 Driver acceptance and design
7.4 Conclusion
8 Conclusions 
8.1 Conclusion
8.2 Perspectives
A Root nding methods 
A.1 Bisection-Search
A.2 Newton Method
A.3 Ridder’s Method
A.4 Brents Method
B Vehicle model 
B.1 Steering and lateral vehicle model
C Survey 
D Synthèse 
D.1 Introduction
D.2 Etat de l’art
D.3 Modélisation
D.3.1 Véhicule thermique
D.3.2 Véhicule électrique
D.3.3 Véhicule hybride
D.4 Optimisation
D.5 Optimisation de trajectoire pour chaque type de véhicule
D.5.1 Véhicule thermique
D.5.2 Véhicule électrique
D.5.3 Véhicule hybride
D.6 Intégration des contraintes
D.7 Réalisation et test d’un système d’assistance pour l’éco-conduite
D.8 Conclusion et perspectives
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *