Total soluble sugars (TSS) concentration

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

General introduction
I. Grapevine and climate change
I.1. Grapevine economic trends
I.2. Climate change
I.3. First observations and expectations of climate change impact on Grapevine
II. Yield and elevated temperature
II.1. Yield definition in grapevine
(i) Grapevine reproductive development description
(ii) Yield components
(iii) Quality aside
II.2. Elevated temperature effect on crop yield
II.3. Elevated temperature effect on grapevine yield
(i) During the first year
(ii) During the second year: budburst
(iii) During the second year: flowering and fruit set
(iv) During the second year: first phase of berry growth
(v) During the second year: berry maturing
III. Carbon balance and elevated temperature
III.1. Elevated temperature effect on carbon acquisition
(i) Temperature effect on Photosynthesis
(ii) Temperature acclimation
III.2. Elevated temperature effect on carbon use
(i) Temperature effect on Respiration
(ii) Temperature effect on Photo-Respiration
(iii) Temperature effect on organ production
(iv) Temperature effect on organ expansion
(v) Temperature effect on biomass accumulation
(vi) Temperature effect on reserves dynamics
III.3. Elevated temperature effect on carbon balance
(i) Carbon balance definition
(ii) Existing models?
(iii) Temperature effect on Carbon Balance
IV. Working hypothesis: temperature effects on fruit set are related to carbon balance and dynamics?
V. The Microvine: a new model to address scientific issues on the grapevine response to temperature?
V.1. Wild type grapevine limitations
V.2. Creation and genetic description of Microvine
V.3. Phenotype description
V.4. Gibberellic acids in grapevine
(i) Synthesis and signalization pathway
(ii) Implication in development
Summary
(iii) Implication in response to biotic and abiotic stresses
(iv) What about Microvine?
V.5. Other dwarf model plants
VI. Working plan
General material and method
I. Plant material
II. Climatic conditions
III. Plant measurements global chart
IV. Statistical analysis
References
Chapter 1: Microvine, a new model for exploring grapevine response to climate warming
Abstract
Keywords
I. Introduction
I.1. Materials and methods
I.2. Plant material and growing conditions
I.3. Temporal reproductive and vegetative variables measurements
I.4. Spatial reproductive and vegetative variables measurements
I.5. Biochemical analyses
I.6. Calculations of leaf area, internode and berry volume, phyllochron and spatio-temporal conversion
I.7. Statistical analysis
II. Results
II.1. Microvine spatial patterns mimic grapevine dynamic patterns for vegetative and reproductive developments and berry metabolite accumulation
II.2. The temporal changes in berry and leaf sizes were conserved among phytomers
II.3. The spatial changes in berry, leaf and internode sizes were stable over time
II.4. The temporal leaf and berry developments patterns were accurately inferred from spatial profiles along the axis
II.5. Elevated temperature uncoupled biomass from volumetric growth, cut down starch storage in internodes and delayed ripening
III. Discussion
Summary
III.1. Microvine, a model that resembles grapevine
III.2. Microvine, a grapevine model with continuous and regular vegetative and
reproductive development
III.3. Microvine, a grapevine model with a few limitations
III.4. Microvine, a model for addressing grapevine responses to abiotic stresses
IV. Conclusion
V. Acknowledgements
VI. References
Chapter 2: Microvine developmental and metabolic responses to elevated temperature
I. Introduction
II. Materials and Method
II.1. Plant material and growing conditions
II.2. Development and growth measurements at the plant level
II.2. Development and growth measurements at phytomer levels
II.3. Biochemical analyses
II.4. Calculations of inflorescence abortion rates
II.5. Statistical analysis
III. Results
III.1. The rate of vegetative development was neither affected by years nor by temperature, in contrast with reproductive development
III.2. Spatial profiles of organ size, biomass and TNC concentration were altered by temperature
III.3. Fruitfulness was lower under elevated temperatures, due to inflorescences abortions
III.4. Plants were different at the onset of the experiments in 2011 and 2013
III.5. Day vs. Night temperature
IV. Discussion
IV.1. Vegetative development is stable under elevated temperatures, but reproductive development is delayed
IV.2. Elevated temperatures fasten and increase leaf and internode expansion, but not berry growth
IV.3. Inflorescence abortion present 2 different profiles from the two years of experiments
IV.4. 2011, vigorous plants, late abortion: possible explanations
IV.5. 2013, low vigor plants, early abortion: possible explanations
IV.6. Different insights from 2011 or 2013 experiments
V. Conclusion
VI. Acknowledgments
VII. References
Chapter 3: Réponses du bilan carboné de la Microvigne à la température
I. Introduction
II. Matériel & Méthode
II.1. Matériel végétal
II.2. Conditions climatiques
II.3. Mesures d’échanges gazeux
(i) Mesures d’échanges gazeux des feuilles
(ii) Mesures d’échanges gazeux des organes reproducteurs
(iii) Mesures d’échanges gazeux des plantes entières
II.4. Calculs des surfaces foliaires et des volumes d’inflorescences
II.5. Modélisation de la réponse des échanges gazeux à la température aux échelles organe et plante entière
(i) Courbes enveloppes de Amax et Rmax à l’échelle organe en fonction de la température
(ii) Analyse de covariance des résidus relatifs de An et R par rapport à Amax et Rmax à l’échelle organe
(iii) (iii)Test de la qualité des estimations de An et R aux échelles organe et plante entière
II.6. Modélisation du bilan du carbone à l’échelle plante entière
(i) Formalismes de simulation des BC aérien ou total (BCa ou BCtot)
(ii) Quantité de sucres non structuraux accumulés (Exp. 1 à 2 & 6 à 8)
(iii) Simulation du BCa pour une plante fictive soumise à différents traitements thermiques
II.7. Analyses statistiques
III. Résultats
III.1. Réponses des échanges gazeux à la température et à la charge en fruit à l’échelle de l’organe
III.2. Réponses des échanges gazeux à la température et à la charge en fruit à l’échelle de la plante entière
III.3. Simulation et évaluation des échanges gazeux aux échelles organe et plante entière pour les expérimentations
III.4. Simulations et évaluation des bilans carbonés aérien et total pour les expérimentations
III.5. Simulation du bilan carboné aérien pour des plantes fictives soumises à un gradient de température et différents niveaux de charge en fruit
IV. Discussion
IV.1. L’élévation de la température à court terme réduit le BCa de la Microvigne via la diminution du gain de carbone net des organes aériens (DCAn-R)
IV.2. A long terme, l’acclimatation aux températures élevées atténue les diminutions du BCa, malgré l’augmentation de BMa, en (DCAn-R)
IV.3. Les diminutions de la charge en fruit favorisent le gain de carbone net des organes aériens (DCAn-R) et augmentent le BCa
Summary
IV.4. Des différences de BCa et d’accumulations de sucres TNC marquées entre les années : quels rôles des états initiaux de développement aérien et racinaires?
V. Conclusion
VI. Références

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *