(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1 Literature review
1.1 Hexagonal closed packed structure
1.1.1 Deformation modes
1.1.1.1 Slip
1.1.1.2 Twinning
1.1.1.3 Kinking
1.1.2 Solute effect on plastic deformation
1.2 Hydrogen damage
1.2.1 Practical cases
1.2.2 Hydrogen damage mechanism
1.3 Hydride phase transformation
1.3.1 Hydride phases and orientation relationships
1.3.2 Misfit accommodation
1.3.3 Hydride enhanced hardening process
1.4 Chapter summary
Chapter 2 Experimental procedures and crystallographic calculations
2.1 Experimental procedures
2.1.1 Material
2.1.2 Hydrogen charging procedure
2.1.3 Polishing preparation
2.1.4 Nanoindentation test
2.1.5 Tensile tests
2.1.6 Microstructural characterization
2.2 Crystallographic calculations
2.2.1 Coordinate transformation
2.2.1.1 Bravais ↔ crystal coordinate system
2.2.1.2 Rotation of crystal coordinate system
2.2.1.3 Crystal ↔ sample coordinate system
2.2.2 Misorientation (Disorientation)
2.2.3 Trace analysis
2.2.4 Deformation theory
2.2.4.1 Basic concepts
2.2.4.2 Twinning
2.2.4.3 Hydriding
2.3 Chapter summary
Chapter 3 Crystallographic orientation dependence of hydride precipitation in commercial pure titanium
3.1 Introduction
3.2 Experimental process
3.3 Character of hydride layer
3.3.1 Microstructure characterization before and after hydrogen charging
3.3.2 Classification of initial α-Ti grains
3.3.3 Crystal orientation dependence of hydride precipitation
3.4 Orientation relationship preference of α-Ti / δ-hydride transition
3.5 Strain anisotropy of α-Ti / δ-hydride phase transformation
3.6 Anisotropy of hydride nucleation
3.6.1 Microstructure of hydride platelets
3.6.2 Variant selection of hydride platelets
3.6.2.1 Grains with one or two preferential hydride variants (Group I)
3.6.2.2 Grains with more than three hydride variants (Group II)
3.7 Chapter summary
Chapter 4 Multi-dimensional hydride characterization and accommodation behavior in pure titanium
4.1 Introduction
4.2 Experimental process
4.3 Microstructure evolution of diffusion surface
4.4 Hydride microstructure inside hydride layer
4.4.1 Near-matrix hydride nucleation (Region I)
4.4.1.2 Grains with internal orientation change
4.4.1.1 {101̅2} and {112̅2} twin induced by OR2 hydride
4.4.2 Near-surface hydride precipitation (Region II)
4.5 Cross section of hydride layer
4.6 Intergranular hydride
4.7 Discussion
4.7.1 Hydride transformation mechanism
4.7.2 Variant selection of {101̅2}, {112̅2} and {101̅1} twin
4.7.3 Formation mechanism of adjoining hydride pair
4.8 Chapter summary
Chapter 5 Hydride induced hardening in commercial pure titanium
5.1 Introduction
5.2 Experimental process
5.3 Nano-indentation test
5.3.1 Mechanical property of α-Ti at different hydrogen charging times
5.3.2 Anisotropic hardness of α-Ti before and after hydrogen charging
5.3.2.1 Microstructure of grid indentation array
5.3.2.2 Anisotropic hardness of α-Ti
5.3.2.3 Anisotropic hardness of δ-hydride
5.3.2.4 Comparison between α-Ti and δ-hydride
5.4 Tensile test
5.4.1 Tensile property influenced by hydrogen charging
5.4.2 Interaction between hydride and plastic deformation modes
5.4.2.1 Hydride-dislocation interaction
5.4.2.2 Hydride-twin interaction
5.5 Chapter summary
Chapter 6 Conclusions and prospects
6.1 Conclusions
6.2 Prospects
References


