PVDF for mechanical energy harvesting

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

General introduction
1.1 Energy harvesting
1.2 Feasibility of energy harvesting via SMA/Piezoelectric polymer composite
1.3 State of the art of SMA/piezoelectric composite system
1.4 Introduction to piezoelectricity and principle
1.5 Piezoelectric materials and application in energy harvesting
1.6 Introduction to PVDF and its copolymer for piezoelectric energy harvesting
1.6.1 Stretching
1.6.2 Poling
1.6.3 PVDF for mechanical energy harvesting
1.7. Modeling of the ferroelectric and ferroelastic behaviors of piezoelectric materials
1.8 Introduction to shape memory alloys
1.8.1 Shape memory effect
1.8.2 Superelasticity
1.8.3 Modeling of the SMA thermomechanical behavior
1.9 Conclusion
2.1 Processing of SMA/P(VDF-TrFE) composite
2.1.1 Materials and methods
2.1.2 Synthesis of P(VDF-TrFE) solution
2.1.3 Spin coating technique
2.1.4 SMA/(PVDF-TrFE) composite
2.1.5 Multi-layered SMA/(PVDF-TrFE) composite
2.1.6 Polarisation hysteresis
2.2. SMA/P(VDF-TrFE) composite with interface layer
2.2.1 PEN/P(VDF-TrFE) device
2.2.2 Polarisation hysteresis
2.2.3 SMA/Epoxy/PEN/P(VDF-TrFE) composite
2.2.5 Summary
2.3 Experimental characterization for energy harvesting
2.3.1 Mechanical energy harvesting performance
2.3.2 Output voltage
2.3.3 Output power
2.3.4 SMA/ P(VDF-TrFE) composite
2.3.7 Output voltage
2.4 Thermomechanical loading test in tensile machine for SMA/P(VDF-TrFE) device
2.4.1 Stress-strain -temperature
2.4.2 Voltage-strain-temperature
2.4.3 Summary
2.5 Micro energy harvester characterisation system
2.5.1 Support system and frame
2.5.2 Cooling and heating source
2.5.3 Optical lens system
2.5.4 Summary
2.6 Conclusion
3.1 Modeling of SMA behavior
3.2 Modeling of piezoelectric behavior
3.2.1 Linear model
3.3 Finite element simulation of the SMA/(PVDF-TrFE) composite
3.3.1 SMA thermomechanical properties
3.3.2 Piezoelectric properties
3.4 Finite element (FE) model of the device
3.4.1 Tensile and bending tests
3.5 SMA behaviour simulation with Chemisky-Duval’s model
3.5.1 Superelastic effect
3.5.2 One-way shape memory effect
3.5.3 Assisted Two-way shape memory effect
3.6 Simulation of the two-layer composite material
3.6.1 Mesh and element type
3.7 Simulation results and discussion
3.7.1 One-way shape memory effect
3.7.2 Two-way shape memory effect
3.7.3. SMA/Piezoelectric polymer composite
3.8 Comparison between simulation and experimental analysis of the composite
3.9 Prototype geometry
3.10 Conclusion
4.1. Shaker test bench for piezoelectric energy recovery
4.1.1 Components of the shaker test bench
4.1.2 Study with the shaker test bench
4.2 Mechanical system for bending test
4.2.1 Principle of operation
4.2.2 Study with the mechanical bending system
4.3 Electronic circuits for piezoelectric energy harvesting: state of the art
4.3.1 Electrical modelling of the piezoelectric generator
4.3.2 Piezoelectric energy recovery standard circuits
4.3.3 Optimal recovery techniques
4.4 Practical application to our system
4.4.1 Equivalent electrical circuit of a piezoelectric generator
4.4.2 Choice of energy harvesting electronics
4.4.3 Simulation of the system with the LTC 3108 board
4.4.4 Simulation of the system with the LTC 3588-1 board
4.5 Conclusion
5. General conclusions and perspective

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *