(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
PART 1 – THE CO2-DISSOLVED PROJECT
I. PRINCIPE
PART 2 – STATE OF THE ART
I. LES ROCHES CARBONATEES
I.1. Caractéristiques pétrographiques des roches carbonatées
I.2. Caractéristiques pétrophysiques des roches carbonatés
I.2.1. La porosité (l’espace poreux)
I.2.2. La perméabilité
I.2.3. La surface spécifique (interface fluide /roche) et la surface réactive
I.3. Nomenclature et classification des roches carbonatées
II. APPROCHE THEORIQUE DE LA REACTIVITE DES RESERVOIRS CARBONATES PAR FORÇAGE HYDROGEOCHIMIQUE ANTHROPIQUE
II.1. Système calco-carbonique et réactions de dissolution/ précipitation (échelles microscopiques)
II.1.1. Dissolution du CO2
II.1.2. Aspect thermodynamique des phénomènes de dissolution/précipitation
II.1.3. Aspect cinétique des phénomènes de dissolution/précipitation
II.1.3.1. Mécanisme de contrôle de la vitesse globale de réaction
II.1.3.2. Paramètres définissant la cinétique de dissolution/ précipitation
II.2. Transport réactif dans une roche calcaire poreuse (classification des modèles de dissolution (introduction Pe-Da)
II.2.1. Description du transport réactif multi-échelle
II.2.2. Adimensionnement du transport réactif et classification des déformations
PART 3 – EXPERIMENTAL APPROACH
I. INTRODUCTION
II. MATERIALS
II.1. Carbonate rock sample selected for experiments: the “Lavoux limestone”
II.2. Description of the injection well materials
II.2.1. Cement
II.2.2. Injection tube steel
III. PRE-DIMENSIONING MODELING OF THE MIRAGES-2 EXPERIMENTS
III.1. Procedure of the numerical experiment used to define the injection conditions of the flowthrough experiments
III.2. Results
III.2.1. Impact of the flowrate
III.2.2. Impact of the amount of dissolved CO2 in the injected solution
III.3. Conclusion of the pre-dimensioning modeling
IV. THE EXPERIMENTAL BENCH: MIRAGES-2
IV.1. Sample design and preparation process
IV.2. Description of the MIRAGES-2 experiment
IV.2.1. Device for the CO2/solution mixture
IV.2.2. Device for the radial injection of the CO2 rich solution (MIRAGES-2)
IV.2.3. In-situ thermodynamic and chemical monitoring of the experiment
V. EXPERIMENTAL PROTOCOL
V.1. Protocol of injection
V.2. Determination of the initial fluid chemistry and preparation procedure
VI. DESCRIPTION OF THE EXPERIMENT
VII. CHARACTERIZATION OF PRE- AND POST- EXPERIMENTAL SAMPLES
VII.1. Investigation of the petrophysical properties of the rock
VII.1.1. Permeability
VII.1.2. Porosimetry
VII.1.2.1. Concept
VII.1.2.2. Protocol of measurement and data acquisition
VII.1.3. Sampling protocol of the pre- and post-petrophysical analyses
VII.2. Investigation of the evolution of the structural properties of rock by imaging
VII.2.1. Thin section observation
VII.2.2. Scanning Electron Microscopy (SEM)
VII.2.3. X-Ray micro-tomography
VII.2.3.1. Concept and data acquirement procedure
VII.2.3.2. Image processing protocol
VII.2.3.3. Surface roughness analysis protocol
VII.2.3.3.1. Surface curvature concept
VII.2.3.3.2. Image processing protocol for surface curvature analysis
VII.2.3.4. Description of the analyzed samples
VII.2.4. In and ex-situ chemical analysis
VII.2.4.1. In-situ high pressure pH measurement
VII.2.4.1.1. Image Materiel and method
VII.2.4.1.2. pH probes calibration
VII.2.4.2. In-situ Raman spectroscopy under high pressure/high temperature hydrothermal conditions
VII.2.4.2.1. In-situ Raman: material and method
VII.2.4.2.2. Results of the in-situ Raman calibration at 20°C
VII.2.4.2.3. in-situ Raman calibration at 60°C
VII.2.4.3. Solution chemistry analysis by ICP-AES and ion chromatography (IC)
PART 4 – EXPERIMENTAL MODELLING OF THE INJECTION OF CO2 IN DISSOLVED FORM IN GEOLOGICAL RESERVOIR: RESULTS AND OBSERVATIONS
I. INITIAL CHARACTERIZATION OF THE ROCK SAMPLES
I.1. Petrographic analysis
I.2. Petrophysical analysis
I.3. Chemical analysis
II. MINERAL REACTIVITY OF THE LIMESTONE ROCK SAMPLES FOLLOWING THE INJECTION OF CO2-RICH SOLUTIONS: RESULTS AND OBSERVATIONS
II.1. Results of in-situ data acquisition
II.1.1. Pressure/Temperature and mass flow recording
II.1.2. pH measurement
II.1.3. Carbonate speciation
II.2. Chemical analysis of the aqueous solution
II.3. Sample alteration: Structural characterization
II.3.1. Macroscopic observation (post-experimental core-plug external observation and CT-scan images analysis)
II.3.2. Petrophysical parameters
II.3.2. Microscopic observation (SEM)
PART 5 – DISCUSSION: SPATIO-TEMPORAL EVOLUTION OF REACTIVE TRANSPORT PHENOMENA
I. pH VARIATION AND MASS BALANCE
II. DOMINANT MECHANISMS IN THE INITIATION OF DISSOLUTION PATTERNS: A DIMENSIONLESS NUMBER DISCUSSION
III. SPATIO-TEMPORAL EVOLUTION OF THE DISSOLUTION PROCESS
IV. EVIDENCE OF PRECIPITATION PHENOMENA
PART 6 – STRUCTURAL CONTROL OF A DISSOLUTION NETWORK IN A LIMESTONE RESERVOIR FORCED BY RADIAL INJECTION OF CO2 SATURATED SOLUTION
ABSTRACT
PAPER
CONCLUSION
NOMENCLATURE
REFERENCES BIBLIOGRAPHIQUES




