(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Introduction
1.1 Nuclear fusion : basic concepts
1.2 Magnetic connement : Tokamaks
1.2.1 Magnetic eld conguration
1.2.2 Circulating & trapped particles
1.3 Particle transport in tokamaks
1.3.1 Turbulent transport
1.3.2 Neoclassical transport
1.4 Impurities in tokamaks
1.4.1 Impurity accumulation
1.4.2 Poloidal asymmetry of impurity density
1.5 Outline
2 Gyrokinetic model for impurity transport
2.1 Plasma models
2.1.1 Kinetic model
2.1.2 Fluid model
2.1.3 Gyrokinetic model
2.2 Numerical features of gyrokinetic codes
2.3 GYSELA-5D : Gyrokinetic model
2.3.1 Gyrokinetic Vlasov equation
2.3.2 Quasi-neutrality equation
2.3.3 Collisional operator
2.3.4 External sources
2.4 TERESA-4D : Gyro-bounce kinetic model
2.4.1 Action and angle variables
2.4.2 Gyro-bounce Vlasov equation
2.4.3 Quasi-neutrality equation
3 Impurity pinch generated by trapped particle driven turbulence
3.1 Introduction
3.2 Impurity Pinch
3.2.1 Quasi-linear impurity transport
3.2.2 Validity of the quasi-linear approximations
3.2.3 Pinch velocity from nonlinear numerical simulations
3.3 Parametric dependencies of impurity pinch
3.3.1 Thermo-diusion
3.3.2 Curvature pinch
3.4 Conclusion
4 Gyrokinetic modelling of light to heavy impurity transport
4.1 Introduction
4.2 Neoclassical impurity ux
4.2.1 Impurity ux with uniform density distribution
4.2.2 Impurity ux with poloidal asymmetries
4.3 Numerical results
4.3.1 Impurity ux with poloidal asymmetry driven by turbulence .
4.3.2 Poloidal asymmetry driven by background turbulence
4.4 Conclusion
5 Eects of toroidal rotation on impurity transport
5.1 Introduction
5.2 Theoretical approach
5.2.1 Distribution function with toroidal rigid rotation
5.2.2 Poloidal asymmetries generated by toroidal rotation
5.2.3 Neoclassical and turbulent impurity transport in rotating plasma
5.3 Numerical results
5.3.1 Enhanced poloidal asymmetry by toroidal rotation
5.3.2 Impurity particle ux
5.4 Conclusion
6 Conclusion
A Quasi-linear impurity transport by uid approach
B Perpendicular ux and CGL pressure tensor
B.1 Magnetic curvature
B.2 Parallel frictional force
C Impurity density distribution from the parallel dynamics
Bibliographie




