(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
I. Introduction
II. State of the art
II.1. Electrochemical microreactors for wastewater treatment application
II.1.1. Influence of applied current density
II.1.2. Influence of flow rate
II.1.3. Influence of interelectrode distance
II.1.4. Influence of electrode material
II.1.5. Influence of initial concentration of pollutant
II.1.6. Design and modularity of microfluidic electrochemical cell
II.1.6.1. Mass transfer in submillimetric electrochemical reactors
II.1.6.2. Microfluidic electrochemical reactor in wastewater treatment application
II.2. Concomitant cathodic electro-precipitation during an electrolytic process
II.2.1. Applied cathode potential/current density
II.2.1.1. Relation between cathode potential, local alkalization and mineral scaling
II.2.1.2. Gas evolution activity on electrode surface
II.2.1.3. Current distribution on gas evolving electrode
II.2.2. Electrolytic properties and composition
II.2.2.1. Presence of multi-ions in solution
II.2.2.2. Presence of organics
II.2.2.3. Presence of scaling/corrosion inhibitors
II.2.2.4. Temperature and pH
II.2.3. Electrode materials
II.2.4. Electrochemical reactor design, scale up and maintenance
II.3. Pharmaceuticals removal by EAOPs
II.4. Concluding remarks
III. Material and methods
III.1. Chemical reagents
III.1.1. Preparation of effluents
III.1.2. Analysis
III.1.3. Electrochemical cell characterization
III.2. Preparation of effluent
III.2.1. Simulated effluents
III.2.2. Reclaimed wastewater effluent (RW)
III.2.3. Electrolyte for electrochemical reactor characterizations
III.3. Experimental setup
III.3.1. Electrochemical system
III.3.2. Pretreatment of electrodes
III.3.3. Post treatment and recovery process
III.4. Analytical methods
III.4.1. Inductively coupled plasma optical emission spectrometry (ICP-OES)
III.4.2. TOC/TN analysis
III.4.3. Chromatography
III.4.3.1. Ionic chromatography
III.4.3.2. High performance liquid chromatography – photo diode array detection (HPLC-PDA)
III.4.4. Spectrophotometry
III.4.5. Scanning electronic microscopy (SEM) coupled to energy dispersive X-ray (EDX) analysis
III.4.6. Electrochemical methods
III.4.6.1. Chronoamperometry and chronopotentiometry
III.4.6.2. Cyclic voltammetry (CV) and linear scan voltammetry (LSV)
III.4.6.3. Electrochemical impedance spectroscopy (EIS)
III.5. Modeling software
III.5.1. Kramers-Kronig test
III.5.2. Zsimpwin®
III.5.3. Aquasim©
III.6. Fitting evaluation criteria between experimental and modeling data
IV. Mineral cathodic electro-precipitation and its kinetic modeling in thin-film microfluidic reactor during advanced electro-oxidation process
IV.1. Introduction
IV.2. Experimental section
IV.3. Modeling
IV.3.1. Electrolyte containing Mg2+ and Ca2+
IV.3.2. Electrolyte containing Ca2+ and CO32-
IV.3.3. Electrolyte containing Mg2+ and CO32-
IV.3.4. Electrolyte containing Mg2+, Ca2+ and CO32-
IV.3.5. Modeling software and fitting evaluation
IV.4. Results and discussion
IV.4.1. Stability of anions in blank solutions using BDD or Pt anode
IV.4.2. Local alkalization on cathode surface: reactions’ selectivity between reduction of dissolved O2 and water
IV.4.3. Influence of electromigration of ionic species
IV.4.4. Influence of matrix of electrolyte
IV.4.4.1. Influence of CO32- towards the mineral electro-precipitation
IV.4.4.2. Influence of Mg2+ towards the mineral electro-precipitation
IV.4.4.3. Influence of Ca2+ towards the mineral electro-precipitation
IV.4.5. Evolution of pH and conductivity
IV.4.6. Mass balance and elements recovery
IV.4.7. Theoretical evolution of Ca2+, Mg2+ and interfacial CO32- during electrolysis in different matrices
IV.5. Conclusions
V. Mass transfer evolution in microfluidic thin film electrochemical reactor: New correlations from millimetric to submillimetric interelectrode distances
V.1. Introduction
V.2. Experimental section
V.2.1. Electrochemical system
V.2.2. Mass transfer characterization
V.3. Results and discussion
V.3.1. Mass transfer behavior over a wide range of interelectrode distances
V.3.2. Mass transfer correlations in microfluidic and millimetric parallel-plate electrochemical reactors
V.4. Conclusions
VI. Role of interelectrode distance and electrogenerated gas bubbles on mineral electro precipitation
VI.1. Introduction
VI.2. Experimental section
VI.3. Modeling
VI.3.1. Kinetics of Mg(OH)2 and CaCO3 electro-precipitation
VI.3.2. Relationship between double layer capacitance, double layer thickness and interelectrode distance
VI.3.3. Modeling and fitting evaluation
VI.4. Results and discussion
VIII
VI.4.1. Kinetics and modeling of mineral electro-precipitation at various interelectrode distances
VI.4.2. Impact of cathode potential on mineral electro-precipitations at different interelectrode distances
VI.4.3. The influence of gas evolution on the formation of mineral electro-precipitation
VI.4.4. Cathode/electrolyte interface impedance study of electro-precipitation at different interelectrode distances
VI.5. Conclusions
VII. Effect of simulated and real wastewaters on the occurrence of electro-precipitation and organic pollutants degradation
VII.1. Introduction
VII.2. Experimental section
VII.3. Results and discussion
VII.3.1. Electro-precipitation in electrolyte consisting of only precipitating elements
VII.3.2. Electro-precipitation in the presence of multi-ions representative of reclaimed wastewater
VII.3.3. Electro-precipitation in the presence of organic matter in simulated wastewater
VII.3.4. Electro-precipitation in simulated versus reclaimed wastewater effluent
VII.3.5. Role of electro-precipitation on the degradation of tylosin as model micropollutant in real wastewater effluent
VII.3.5.1. Evolution of electro-precipitation at different applied current densities
VII.3.5.2. Kinetics and modeling of tylosin degradation as target micropollutant in reclaimed wastewater at different applied current densities
VII.4. Conclusions
VIII. Influence of cathode materials towards the formation of electro-precipitate
VIII.1. Introduction
VIII.2. Experimental section
VIII.3. Results and discussion
VIII.3.1. Influence of the porosity of cathode material on the formation of electro-precipitate .
VIII.3.1.1. Electroactivity of stainless steel, graphite and carbon paper characterized by electrochemical method
VIII.3.1.2. Electro-precipitation on different cathode materials at various applied current densities
VIII.3.1.3. Electro-precipitation on porous cathode during electro-oxidation of reclaimed wastewater
VIII.3.2. Role of H2 evolution overpotential: synergistic effect of interelectrode distance and cathode material to reduce electro-precipitation
VIII.3.2.1. Electro-precipitation on stainless steel and graphite at different interelectrode distances
VIII.3.2.2. Cathode/electrolyte interface study of electro-precipitation on graphite and stainless steel by electrochemical impedance technique
VIII.4. Conclusions
IX. General conclusions
IX.1. General overview
IX.2. Kinetic models of mineral scaling inside microfluidic reactors
IX.3. Mass transfer evolution in submillmetric vs. millimetric configuration
IX.4. Fundamental role of interelectrode distance and energetic performance
IX.5. Technical aspects of electro-oxidation treatment of reclaimed wastewater at different applied current densities



