(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Introduction Générale (version française)
1 Évolution des concepts
2 L’énergie géothermique dans une transition énergétique écologique
2.1 Depuis une transition énergétique économique
2.2 Vers une transition énergétique écologique
2.3 Une transition énergétique écologique
2.3.1 Quelques énergies bas-carbone
3 L’énergie géothermique
3.1 Classification de l’énergie géothermique
4 Contrôle géodynamique et structural des systèmes géothermaux de Haute Température
4.1 Contrôle géodynamique
4.2 Contrôle structural
5 Les Enhanced (ou Engineered) Geothermal System
6 Les Zones de Failles Crustales (ZFC) comme systèmes géothermiques électrogènes 55
7 Objectifs et méthodologies
General Introduction (english version)
1 Evolution of geothermal concepts
2 Geothermal energy in an environmental energy transition
2.1 From an economic energy transition
2.2 Towards a green energy transition
2.3 Green energy transition
2.3.1 Some low-carbon energies
3 Geothermal energy
3.1 Classification of geothermal energy
4 Geodynamic and structural control of HT geothermal systems
4.1 Geodynamic control
4.2 Structural control
5 The Enhanced (or Engineered) Geothermal System
6 Crustal Fault Zones (CFZ) as geothermal power systems
7 Objectives and methodologies
Chapter II : Geodynamics and geothermal system
1 The Earth, a thermal engine
2 Heat fluxes in Europe and France
3 Geological setting of the French Massif Central
3.1 Variscan history
3.2 Mesozoïc history
3.3 Cenozoïc history
4 Geothermal setting of the “La Sioule” licence
4.1 Spring and magma chamber
4.2 Surface heat flux and heat production
4.3 Magnetotelluric data
Chapter III : Hydrothermal circulation in crystalline basement: critical parameters, driving forces and large-scales numerical modelling
1 The permeability
1.1 Permeability, a control parameter for fluid flow and heat transfer within the Earth’s crust 113
1.1.1 Fluid flow control
1.1.2 Heat transfer control
1.1.21 In a homogeneous porous medium
1.1.22 In a fractured medium
1.2 Spatial variation of permeability
1.2.1 Permeability variation with depth
1.2.2 Permeability variation within a fault zone
1.2.3 Spatial variation of permeability within fault zones at different scales of observations, from the fractal to the constructal theory
1.3 The dynamic permeability
2 The driving forces involved in the fluid flow within a fault zone
2.1 The buoyancy forces
2.2 The pressure gradients
2.2.1 Topography effects
2.2.2 Tectonic stresses
3 Large-scale numerical modelling of fault zones constrained by a multidisciplinary approach
Chapter IV : Some controlling and limiting factors on fluid flow, within a Crustal Fault Zone, in a basement domain
1 Equation and benchmarking
1.1 Governing equations
1.1.1 Equations used in the Thermal and Hydraulic (TH) models
1.1.2 Equations used in the Thermal Hydraulic and Mechanical (THM) models
1.2 Benchmarking
2 Dip and permeabilty effects of CFZ on fluid flow
2.1 Geometry boundary conditions and meshing
2.1 Results
3 Stress direction, stress intensity, and permeability effects on fluid flow within CFZ
3.1 Geometry, boundary conditions and meshing
3.2 Results
4 Discussion
4.1 Dip and permeability effects on fluid flow within CFZ
4.2 Stress direction, stress intensity, and permeability effects on fluid flow within CFZ
5 Tectonic regimes as a control factor for crustal fault zone geothermal reservoir in an amagmatic system
Chapter V : Geothermal potential of the Pontgibaud Crustal Fault Zone (French Massif Central) – a Multidisciplinary Approach
1 Geological setting
1.1 Geological formation
1.2 Structural setting
1.2.1 Famennian to late Namurian (365 Ma-315 Ma)
1.2.2 Early to late Stephanian (305-295 Ma)
1.2.3 Permian to Jurassic (295-205 Ma)
1.2.4 Cretaceous to late Pliocene (96-2.5 Ma)
1.2.5 Present-day stress regime
1.3 Structure favorable features for fluid circulation in the «La Sioule» licence
1.3.1 The Sillon Houiller fault zone
1.3.2 The Aigueperse-Saint-Sauves fault zone
1.3.3 The Pontgibaud Fault Zone
1.4 Geothermal setting of the Pontgibaud area
1.4.1 Spring and magma chamber
1.4.2 Surface heat flux and heat production
1.4.3 Magnetotelluric data
2 Materials and methods
2.1 Field, structural observations, and Peyrouses 1 borehole sampling
2.2 Laboratory observations and measurements
2.3 Numerical modelling approach
2.3.1 Meshing geometry and boundary conditions of 2D TH Pontgibaud large-scale numerical modelling
2.3.2 Meshing geometry and boundary conditions of 3D THM Pontgibaud large-scale numerical modelling
3 Results
3.1 Structure characterization of the « La Sioule » licence
3.2 Structure characterization of the Pontgibaud Fault Zone
3.3 Synthesis of fields observations and measurements
3.4 Laboratory observation
3.4.1 Thin-section observations (2D observations)
3.4.2 X-Ray Microtomography Observations (3D observations)
3.5 Laboratory measurements
3.5.1 Porosity and Permeability measurements
3.6 Synthesis of field and laboratory observations and measurements: an introduction to large-scale numerical modelling
3.6.1 Field, thin-section and X-Ray microtomography observations for permeability spatial variation (X, Y)
3.6.2 Borehole observations and permeability measurements for permeability spatial variations (X, Z)
3.7 Numerical Approach
3.7.1 Rayleigh number analysis
3.7.2 2D TH numerical modelling of the Pontgibaud Crustal Fault Zone
3.7.21 Finding the right R and Kf combination for Pontgibaud Crustal Fault Zone
3.7.22 Combining geophysical data and numerical results
3.7.3 3D THM numerical modelling of the Pontgibaud Crustal Fault Zone
4 Discussions
4.1 Origin and effects of heterogeneities
4.2 Controlling fluid flow factors within the Pontgibaud Crustal Fault Zone
4.3 Positive temperature anomaly on the Pontgibaud CFZ
Chapter VI : General discussion, limitations and perspectives
1 A multidisciplinary approach
2 Why use numerical modelling?
2.1 Choice of boundary conditions
3 Control and limiting factors on fluid flow within CFZ in basement domain
3.1 Structural dip effect on fluid flow within CFZ
3.2 Permeability ratio effect on fluid flow within CFZ
3.3 Effect of topography on fluid flow within CFZ
3.4 What effect(s) have fault intersections on fluid flow within CFZ’s?
3.5 Comparison of the numerical parametric study results with large-scale numerical modelling
3.5.1 2D study with a TH coupling
3.5.2 3D study with a THM coupling
4 Darcy’s law limits and representative permeability of CFZ
4.1 Darcy’s law limits
4.2 Representative permeability of CFZ
5 Geothermal potential of CFZ




