The most impressive observations of oceanic ISW

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Chapter 1
1.1 Rationale
1.2 Physical characteristics of the Indonesian seas
1.2.1 Indonesian through flow
1.2.2 Barotropic tides in the Indonesian seas
1.2.3 Internal tides in the Indonesian seas
1.2.4 Spotting internal solitary waves in the Indonesian seas
1.2.5 Potential mixing hotspots and related water mass transformation in the Indonesian seas
1.3 Aims and objectives
Turbulence and Mixing
2.1 The energy flux path to turbulence in the ocean
2.2 Energy equation of turbulence
2.3 Internal waves
2.3.1 Spectrum
2.3.2 Generation mechanism of internal solitary waves
2.4 Turbulence measurements
2.4.1 Turbulent length scales
2.4.2 Determination of vertical diffusivity, Kρ
2.4.3 Mixing efficiency
2.4.4 Double diffusion influence on mixing
Spatial Structure of Turbulent Mixing in the Indonesian Seas (Submitted Chapter 3Paper to Progress in Oceanography)
3.1 Introduction
3.2 Methodology
3.2.1 Dataset
3.2.2 Mixing estimates
3.2.3 Numerical model outputs
3.3 Results and discussion
3.3.1 Hydrography
3.3.2 Relevance of the turbulence estimates: comparison with microstructure measurements
3.3.3 Turbulence and mixing of the Pacific water masses layer
3.3.4 Model comparisons: spatial variations of turbulence and insights on mechanisms85
3.4 Concluding remarks
3.5 Acknowledgments
3.6 Appendix
3.6.1 Snapshot CTD stations by year
3.6.2 Spatial grid averaging for the sparsely distributed CTD casts
3.6.3 Overturn selection criterion
3.6.4 Analysis of step structures in the repeated stations
3.6.6 Repeated CTD cast sampling times
Mixing Estimates Enhanced by Shoaling Internal Solitary Wave in the Chapter 4Manado Bay, Sulawesi, Indonesia (Paper to be submitted)
4.1 Introduction
4.2 Methodology
4.2.1 In situ observations
4.2.2 Numerical modeling
4.2.3 Mixing estimates
4.3 Internal Tides Generation
4.3.1 Generation processes
4.3.2 Energetic aspects
4.4 Shoaling Internal Solitary Waves
4.4.1 High frequency and small-scale patterns over the Manado shelf break and slope in the Shoaling simulation
4.4.2 Energetics of the shoaling ISW trains
4.4.3 Enhanced Mixing due to Shoaling ISW
4.5 Summary
4.6 Acknowledgments
4.7 Appendix: criteria for Thorpe scale computation
Observation of Internal Tides, Nonlinear Internal Waves and Mixing Chapter 5Estimates in the Lombok Strait, Indonesia (Paper to be submitted)
5.1 Introduction
5.2 Methodology
5.2.1 In situ observations
5.2.2 Mixing estimates
5.3 Results and discussion
5.3.1 Hydrography
5.3.2 ISWs characteristics
5.3.3 Dissipation estimates
5.4 Concluding remarks
5.5 Acknowledgments
5.6 Appendix
Conclusions and Perspectives
6.1 Summary of the main results
6.2 Perspectives
6.2.1 Mixing estimates from historical datasets in the Indonesian seas
6.2.2 Internal tide generation and enhanced mixing due to ISW breaking events
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *