(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Introduction
1.1 Time and frequency metrology
1.1.1 Accuracy
1.1.2 Stability
1.2 The Oscillator signal
1.3 Noise analysis
1.3.1 Frequency domain
1.3.2 Time domain
1.3.2.1 Allan Variance
1.3.2.2 Overlapping Allan Variance
1.3.2.3 Modified Allan Variance
1.3.2.4 Time Variance
1.4 Clocks and timescales
1.5 Introduction to time transfer methods
1.5.1 One way time transfer method
1.5.1.1 GNSS time dissemination
1.5.1.2 GNSS time transfer methods
1.5.2 Two way time transfer method
1.5.3 Two way Satellite Time and Frequency transfer (TWSTFT)
1.5.4 Time and frequency transfer over Optical fiber links
1.5.5 Time over Internet
1.5.5.1 Network Time Protocol (NTP)
1.5.5.2 Precision Time Protocol
1.5.5.3 SONET and SDH
1.5.5.4 White Rabbit PTP (WR-PTP)
1.5.6 Performance comparison of some time transfer methods
1.6 Implemented and Potential applications of White Rabbit
1.6.1 For Scientific experiments
1.6.2 Calibration in the RF domain
1.6.3 Smart power grids
1.6.4 5G mobile networks
1.6.5 Financial transactions and timestamping
1.7 Outline of the thesis
2 Introduction to White Rabbit Precision Time Protocol (WR-PTP)
2.1 Introduction to WR project
2.2 Introduction to WR-PTP
2.2.1 Precision time Protocol (PTP)
2.2.2 Synchronous Ethernet
2.2.3 Digital Dual Mixer time difference (DDMTD) phase detector
2.3 A typical White Rabbit Network
2.4 Synchronization in White Rabbit
2.4.1 Syntonization
2.4.2 Link Delay measurement
2.4.3 Link asymmetry evaluation
2.4.4 Clock offset evaluation
2.5 Unification of White Rabbit into PTP
2.6 Components of a White Rabbit Network
2.7 White Rabbit equipment
2.7.1 The White Rabbit Switch
2.7.2 The White Rabbit Nodes
2.8 Optical emitters
2.9 The transmission medium – Optical fibers
2.10 White Rabbit clocking Scheme
2.11 The potential performance limitations
2.12 Outlook
3 Improving the White Rabbit Switch performance
3.1 Introduction
3.2 The White Rabbit Switch in Grandmaster mode
3.2.1 Experimental setup
3.2.2 Phase noise power spectral density
3.3 Improving the Grandmaster WRS performance
3.3.1 Phase noise Power Spectral Density and Allan Deviation
3.3.2 Time Stability performance
3.4 Performance of a Slave White Rabbit Switch
3.4.1 Testing Optical link configurations
3.4.2 Experimental setup
3.4.3 Effect of Chromatic dispersion
3.4.4 Results
3.5 Improving the performance of a Slave WRS
3.5.1 Phase Locked Loops (PLL)
3.5.2 Experimental Setup
3.5.3 Phase locked loop Bandwidth variation
3.5.4 A mid range White Rabbit link
3.5.5 Phase locked loop bandwidth optimization
3.5.6 Frequency and Time stability performance
3.6 The Local Oscillator performance
3.7 Increasing the PTP message exchange rate
3.8 Summary
4 Towards long range time and frequency dissemination using White Rabbit
4.1 Introduction
4.2 A realistic Telecommunication network span
4.2.1 Experimental Setup
4.2.2 Phase locked loop Bandwidth optimization
4.2.3 Experimental results
4.2.4 Fiber thermal noise
4.2.5 Limitations for the time stability performance
4.3 Effect of Chromatic Dispersion
4.4 Tackling Chromatic Dispersion
4.5 Cascaded White Rabbit links using DWDM technique
4.5.1 Experimental Setup
4.5.2 Phase locked loop Bandwidth optimization for cascaded stages
4.5.3 Frequency and time stability performance
4.5.4 Extension to a Cascaded 400 km White Rabbit link
4.5.4.1 Phase locked loop bandwidth optimization
4.5.4.2 Frequency stability performance
4.5.4.3 Time stability performance
4.6 A long haul telecommunication span White Rabbit link
4.6.1 Experimental setup
4.6.2 Frequency stability performance
4.6.3 Time stability performance
4.6.4 Effect of reduced PTP rate
4.6.5 Effect of reduced Bandwidth of locking
4.7 A multi user 4×125 km White Rabbit link
4.7.1 Experimental Setup
4.7.2 Frequency and time stability performance
4.8 Conclusion
5 Deployments
5.1 Introduction
5.2 A short range in-campus dissemination network
5.3 A mid range suburban WR link using dark fiber network
6 Time Accuracy
6.1 Introduction
6.2 Calibration of fiber spools using White Rabbit
6.2.1 Calibration: A sensitive task
6.2.2 Calibration by forcing asymmetry in a uni-directional link
6.3 Wavelength swapping technique
6.3.1 Implementation and Results
6.4 Fiber swapping technique
6.4.1 Implementation and Results
6.5 Dual wavelength technique
6.5.1 Implementation and Results
6.6 Summary
7 Conclusion
7.1 Summary
7.2 Perspectives




