(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
CHAPTER 1. INTRODUCTION
CHAPTER 2. INTEGRATED MODELING OF HYDROSYSTEMS: A FOCUS ON STREAM-AQUIFER INTERACTIONS
Résumé en Français
Abstract.
2.1 Introduction
2.2 Surface routing modeling
2.2.1 Hydrodynamic routing modeling techniques
2.2.2 Hydrological routing modeling techniques
2.3 Stream-aquifer modeling
2.3.1 Stream-aquifer connectivity and exchange directions
2.3.2 Importance of coupled stream-aquifer models for interdisciplinary investigations in hydrologic sciences
2.3.3 Stream-aquifer interactions modeling: tackling the challenges
2.3.4 Scaling issues in stream-aquifer interactions modeling
2.3.5 In-stream water levels fluctuations importance to stream-aquifer interactions
2.4 Conclusions
CHAPTER 3. PRINCIPLES AND FUNCTIONING OF THE HYDROLOGICAL PLATFORM EAUDYSSÉE AND THE HYDRAULIC MODEL HEC-RAS
Résumé en Français
Abstract
3.1 Introduction
3.2 Principles and functioning of EauDyssée platform for hydrosystem modeling
3.2.1 Surface component mass balance
3.2.1.1 Production function
3.2.1.2 Surface runoff routing: ISO module
3.2.2 Unsaturated zone component – NONSAT
3.2.3 Saturated zone component: SAM (Simulation des Aquiferes Multicouches).
3.2.4 The regional river routing component RAPID
3.2.5 Stream-aquifer interactions
3.3 The hydraulic model HEC-RAS
3.4 Statistical criteria used to assess model performances
3.4 Conclusions
CHAPTER 4. IMPACT OF IN-STREAM MORPHOLOGY ON SIMULATED DISCHARGE AND WATER LEVELS: SEREIN RIVER CASE STUDY
Résumé en Français
Abstract
4.1 Introduction
4.2 Domain of application: Serein River
4.3 The construction of the Serein River hydraulic model
4.3.1 Selection of the model’s temporal and spatial computational factors
4.3.2 Manning’s roughness coefficient (n) calibration
4.4 Impact of river morphology on river stage and discharge
4.4.1 Scenario GS-I: Removing cross sections that contain two conveying arms (islands)
4.4.2 Scenario GS-II: Only three surveyed cross sections used to represent the geometry of the Serein River
4.4.3 Scenario GS-III: Uniformly generalizing one surveyed cross section along the river reach
4.4.4 Scenario GS-IV: Excluding the floodplains from the geometry representation of the Serein River
4.4.5 Scenario GS-V: Replacing each irregular surveyed section by an equivalent regular trapezoidal section
4.4.6 Scenario GS-VI: Representing the river geometry by a trapezoidal section obtained from average surveyed information of 20 surveyed cross sections
4.4.7 Scenario GS-VII: Representing the river geometry by a triangular section obtained from average surveyed information
4.4.8 Scenario GS-VIII: Representing the river geometry by a rectangular section obtained from average surveyed information
4.5 Synthesis of geometry scenarios results
4.6 Conclusions
CHAPTER 5. AN UPSCALING METHODOLOGY FOR SIMULATING RIVER STAGES AND STREAM-AQUIFER INTERACTIONS: OISE RIVER BASIN CASE STUDY
Résumé en Français
Abstract
5.1 Framework strategy to account for river stages fluctuations
5.1.1 Upscaling from local hydraulic modeling to regional hydrological modeling
5.1.2 The QtoZ water level fluctuation module
5.2 Implementation of the EauDyssée stream-aquifer coupling framework strategy
5.3 Domain of application: The Oise basin
5.4 The Oise basin initial hydro(geo)logical model: low frequency behavior Running and calibrating the initial EauDyssée version at regional scale to produce runoff and groundwater contributions to the hydraulic model
5.4.1 The Oise basin hydro(geo)logical model description
5.4.2 Surface water budget characterization
5.4.3 Hydro(geo)logical model initialization strategy
5.4.4 Recalibration of the Oise initial hydro(geo)logical model: low frequency behavior
5.5 The construction of the Oise River hydraulic model
5.5.1 Oise hydraulic model calibration of Manning’s roughness coefficient
5.5.2 Local to regional scale upscaling example
5.6 EauDyssée simulations after applying the upscaling methodology
5.6.1 Simulated discharge and river stage by the regional hydro(geo)logical model EauDyssée
5.6.2 EauDyssée hydrogeological model simulations: high frequency behavior
5.7 Impact of in-stream water level fluctuations on stream-aquifer interactions at local and regional scale
5.7.1 Stream-aquifer exchanges
5.7.1.1 Local scale analysis
5.7.1.2 Regional scale analysis
5.8 Quantification of stream-aquifer exchange
5.9 Conclusions
CHAPTER 6. CONCLUSIONS AND FUTURE WORK ANNEXE A: SEREIN RIVER MORPHOLOGICAL DATA VS. SIMULATED RATING CURVES
ANNEXE B: RESUME LONG DE LA THESE EN FRANÇAIS
REFERENCES



