Seismic moment acceleration within the development phase

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 L’apport des fonctions source : de la description globale des séismes à celle du détail de leurs processus 
1.1 Généralités sur la source sismique
1.2 La méthode SCARDEC : accès à un catalogue de fonctions source pour une description complète de la rupture
1.3 Propriétés globales et transitoires extraites des catalogues de fonctions source et leur lien avec les modèles de rupture
1.3.1 Paramètres de source macroscopiques
1.3.2 Propriétés transitoires et déterminisme
1.3.3 Modèles cinématiques du développement de la rupture
1.3.4 Modèles en cascade et implications pour le développement de la rupture
2 How does seismic rupture accelerate? Observational insights from earthquake source time functions 
2.1 Introduction
2.2 Moment acceleration in the development phase
2.2.1 SCARDEC STF database and earthquake development phase
2.2.2 Seismic moment acceleration within the development phase
2.2.3 Variability and magnitude-independent behavior
2.3 Time evolution of the development phase
2.3.1 Observational evidence of a power law between ¨M and ˙M
2.3.2 Power-law time exponent of the development phase
2.3.3 Implications for earthquake source physics
2.4 Different behaviors between development phase and early rupture stage
2.5 Conclusion
2.6 Acknowledgments
2.7 Supplementary materials
2.7.1 Statistical analysis for m, , nd and d values
2.7.2 Setting-up of the synthetic STFs catalog
3 Analysis of rupture parameters during the development phase in kinematic source models 
3.1 Stress drop analysis with SRC kinematic inversions catalog
3.2 Source characteristics of a circular crack model with rupture velocity variability .
3.2.1 Analytical slip solution and generation of a random temporal evolution of the rupture velocity
3.2.2 Kinematics of the modified crack model
3.2.3 Effect of rupture velocity variability on synthetic Source Time Functions
3.2.4 Discussion and conclusion
3.3 Rupture properties of a kinematic fractal k−2 source model
3.3.1 Ruiz Integral Kinematic (RIK) model setup
3.3.2 Fault parametrization and global source properties
3.3.3 Rise-time evolution and its effect on synthetic Source Time Functions.
3.3.4 Correlation between slip velocity and rupture velocity
4 Study of the development phase from homogeneous and heterogeneous dynamic ruptures 
4.1 Dynamic view of an earthquake rupture and multi-scaling numerical model .
4.1.1 Stress and energy budget of an earthquake
4.1.2 Fracture surface energy and slip-weakening law
4.1.3 Formulation of the dynamic problem and numerical method
4.2 Rupture propagation on continuous and discontinuous growing fracture surface energy
4.2.1 Continuous fracture surface energy
4.2.2 Discontinuous fracture surface energy
4.3 Effect of heterogeneous distribution of fracture surface energy on the development phase
4.3.1 Multiscale fractal Dc distribution of circular patches
4.3.2 Complex rupture propagation of largest events
4.3.3 Simulated STFs extracted from dynamic simulations for heterogeneous Dc distribution
4.4 Combination of heterogeneities from random initial stress field and fractal fracture surface energy
4.4.1 Random spatial initial stress field
4.4.2 Properties of the development phase for models combining heterogeneous Dc and 0 maps
4.4.3 Discussion and conclusion
Conclusions et Perspectives 
Références

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *