Evolution of protostars

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
1.1 Motivation
1.2 Cosmological structure formation
1.2.1 Cosmological framework
1.2.2 Thermal and chemical evolution
1.2.3 Jeans analysis
1.2.4 Non-linear structure formation
1.3 Formation of the first stars
1.3.1 Primordial chemistry
1.3.2 Collapse of a primordial cloud
1.3.3 Fragmentation
1.3.4 Evolution of protostars
1.3.5 Observational signatures of the first stars
1.4 Formation of the first supermassive black holes
1.4.1 Observations
1.4.2 Seed formation scenarios
1.4.3 Mass accretion and AGN feedback
2 Improving H2 Self-Shielding 
2.1 Motivation
2.2 Methodology
2.2.1 Moving-mesh code AREPO
2.2.2 Initial conditions
2.2.3 Chemistry
2.2.4 H2 self-shielding
2.3 Results
2.3.1 Determination of Jcrit
2.3.2 Differences in the H2 self-shielding
2.3.3 Impossibility of a simple correction factor
2.3.4 Effect of damping wings
2.3.5 Mass infall rate
2.4 Caveats
2.4.1 Stellar spectrum
2.4.2 Resolution
2.4.3 Photochemistry
2.5 Conclusions
3 Gravitational waves from the remnants of the first stars 
3.1 Introduction
3.2 Methodology
3.2.1 Self-consistent Pop III star formation
3.2.2 Binary sampling and evolution
3.2.3 Detectability
3.3 Results
3.4 Discussion
4 Exploring the nature of the Lyman- emitter CR7 
4.1 Introduction
4.2 Observational constraints
4.3 Methodology
4.3.1 Fiducial model
4.3.2 Models of Pop III star formation
4.3.3 Pop III remnant black hole
4.3.4 Direct collapse black hole
4.3.5 Determination of the metal tax
4.4 Results
4.4.1 Cosmologically representative models of primordial star formation
4.4.2 Alternative scenarios of primordial star formation
4.4.3 Pop III remnant black holes
4.4.4 Direct collapse black hole
4.4.5 Mass of metal-poor gas
4.4.6 Comparison of scenarios
4.5 Caveats
4.6 Conclusion
4.6.1 New observations of CR7
5 Statistical predictions for the first black holes 
5.1 Observational constraints
5.2 Probability for stellar mass seed black holes
5.3 Probability for the direct collapse scenario
5.3.1 Atomic cooling halos
5.3.2 Pristine gas
5.3.3 Photodissociating radiation
5.3.4 Tidal and ram pressure stripping
5.3.5 Density of direct collapse seed black holes
6 2D analytical model for AGN-driven outflows in galaxy discs 
6.1 Motivation
6.2 Methodology
6.2.1 Galaxy model
6.2.2 Quantifying the outflow
6.2.3 Shock acceleration
6.2.4 Cooling and heating
6.2.5 Mechanical luminosity and initial wind velocity
6.2.6 Momentum- to energy-driven transition
6.2.7 Validation of the model: comparison to 1D solution
6.3 Results
6.3.1 Standard case (fiducial parameters)
6.3.2 Parameter study
6.3.3 Momentum-driven outflows for AGN luminosities above 1043 erg/s
6.3.4 Gas ejection perpendicular to the disc
6.3.5 Comparison to spherical case
6.4 Discussion
6.4.1 Advantage of 2D
6.4.2 Outflow efficiency as a function of the AGN luminosity
6.4.3 Driving mechanism
6.4.4 Caveats
6.5 Summary and conclusion
7 Conclusion 
7.1 Summary
7.2 Perspectives and future projects
7.2.1 Semi-analytical model of self-regulated BH growth
7.2.2 Constraining the nature of the first stars with Galactic archaeology
7.2.3 Bayesian meta–analysis of the Pop III IMF

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *