Dissociation of excitons

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Chapter I
Introduction and Background Knowledge
1.1. Introduction
1.2. State-of-art of photovoltaics
1.2.1. History and development of photovoltaics
1.2.2. Development of organic solar cells
1.3. Basic knowledge of organic solar cells
1.3.1. Organic semiconductors and their applications in solar cells
1.3.2. The electronic structure of conjugated polymers
1.3.3. Excitons and polarons in organic semiconductors
1.3.4. Photo-conversion process
1.3.4.1. Absorption of photons and generation of excitons
1.3.4.2. Diffusion of excitons
1.3.4.3. Dissociation of excitons
1.3.4.4. Transport of charge carriers
1.3.4.5. Extraction of charges
1.3.5. Architectures of organic solar cells
1.3.5.1. General architecture of organic solar cells
1.3.5.2. Single layer cells
1.3.5.3. Planar heterojunction cells
1.3.5.4. Bulk heterojunction cells
1.3.5.5. Tandem solar cells
1.4. Organic bulk heterojunction solar cells using polymers and small molecules
1.4.1. Hole extraction layer: PEDOT:PSS
1.4.2. Bulk heterojunction
1.4.2.1. Donor material: P3HT
1.4.2.2. Acceptor material: PCBM
1.4.2.3. P3HT:PCBM film
1.4.3. Photovoltaic Characteristics of organic solar cells
1.4.3.1. Current-voltage response and efficiency
1.4.3.2. Performance-limiting factors
1.5. Plasmonic organic solar cells
1.5.1. Plasmons
1.5.1.1. Bulk plasmons
1.5.1.2. Surface plasmons on planar metal-dielectric interfaces
1.5.1.3. Localized surface plasmons in metallic nanoparticles
1.5.2. Organic solar cells utilizing localized surface plasmons
1.5.2.1. Mechanisms of light absorption enhanced by localized surface plasmons
1.5.2.2. Plasmonic organic solar cells
1.6. Conclusions
Chapter II
Experimental methods and techniques
2.1. Materials
2.2. Film and photovoltaic device preparation
2.2.1. General preparation technique for thin films: Spin-coating
2.2.2. Preparation of films and photovoltaic device samples
2.2.2.1. General preparation procedure for films on glass substrate or ITO-coated substrate and for photovoltaic devices
2.2.2.2. Preparation of sample PEDOT:PSS films and OSCs for optimization of PEDOT:PSS layer by post-deposition thermal annealin
2.2.2.3. Preparation of sample PEDOT:PSS films and OSCs for optimization of PEDOT:PSS layer by adding glycerol
2.2.2.4. Sample preparation for optimization of photoactive layer
2.2.2.5. Sample preparation for plasmonic OSCs using Ag NPSMs in PEDOT:PSS layer 53
2.2.2.6. Sample preparation for plasmonic OSCs using Ag NPSMs and glycerol in PEDOT:PSS layer
2.3. Characterization Methods
2.3.1. Characterization technique for Ag nanoparticles and solutions
2.3.1.1. UV-visible absorption for solutions
2.3.1.2. X-ray Diffraction
2.3.1.3. Transmission electron microscopy
2.3.2. Characterization techniques for films
2.3.2.1. Thickness determination
2.3.2.2. Integrating sphere photometer for films
2.3.2.3. Goniophotometry
2.3.2.4. Atomic Force Microscopy and conductive Atomic Force Microscopy
2.3.2.5. Four point probe measurement
2.3.3. Characterization techniques for solar cells
2.3.3.1. Current-Voltage Characterization
2.3.3.2. External quantum efficiency
2.4. Conclusion
Chapter III
Structural, optical and electrical properties of PEDOT:PSS thin films doped with silver nanoprisms
3.1. Introduction
3.2. Ag NPSM synthesis and characterizations
3.2.1. Ag NPSMs synthesis
3.2.2. Characterizations of Ag NPSMs
3.3. Hybrid PEDOT:PSS-Ag NPSM solutions and films
3.3.1. Preparation of hybrid PEDOT:PSS-Ag NPSM solutions and films
3.3.2. Characterizations of hybrid PEDOT:PSS films
3.3.2.1. Absorptance
3.3.2.2. Bidirectional Reflectance Distribution Function (BRDF)
3.3.2.3. Surface profile and electrical conductivity
3.4. Conclusions
Chapter IV
Plasmonic organic solar cells using silver nanoprisms
4.1. Optimization of regular P3HT:PCBM solar cells
4.1.1. Introduction
4.1.2. Optimization of PEDOT:PSS layer
4.1.2.1. Thermal annealing of PEDOT:PSS films
4.1.2.2. Glycerol modified PEDOT:PSS
4.1.3. Optimization of photoactive layer
4.1.3.1. Thermal annealing
4.1.3.2. Solvent annealing and additive for photoactive layer
4.2. Studies of plasmonic solar cells composing silver nanoprisms in PEDOT:PSS
4.2.1. Introduction
4.2.2. plasmonic solar cells composing silver nanoprisms in PEDOT:PSS
4.2.2.1. Introduction
4.2.2.2. Characterization and discussion
4.2.3. Plasmonic OSCs composing Ag NPSMs and glycerol in PEDOT:PSS layer 100
4.2.3.1. Introduction
4.2.3.2. Characterization and discussion
4.3. Conclusions

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *