Plasma scales: Debye length and plasma frequency

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
1.1 Introduction générale en français
1.2 English introduction: Principle of in flight plasma measurement
1.2.1 Past and future scientific missions aiming at analysing low energy plasma
1.2.2 Description of particle instruments
1.3 Sources of perturbations
1.4 Measurements analysis methods
1.4.1 Partial consideration of perturbations
1.4.2 Grey areas for a quantitative measurement
1.5 Interest of numerical simulations
1.5.1 Anticipating the problems: help to design spacecrafts and instruments
1.5.2 Analysing in-flight measurements
1.6 Objectives of this work
1.7 Plan and sum up
2 The Solar wind plasma 
2.1 Plasma physics
2.1.1 Distribution functions
2.1.2 Plasma scales: Debye length and plasma frequency
2.1.3 Magnetic field
2.2 The Solar wind
2.2.1 Properties and observations
2.2.2 Interaction with the magnetic field: the magnetospheres
3 Interactions with a satellite 
3.1 Equilibrium potential and currents
3.2 Differential charging
3.3 Space charge effects and ambient current estimations: probe theory
3.3.1 The Boltzmann factor
3.3.2 The thick sheath regime
3.3.3 The thin sheath regime
3.3.4 Concluding remark
3.4 Ideal collected distribution functions
3.5 Secondary electron emission / electron impact: SEEE
3.5.1 SEEE Principle
3.5.2 SEEE Modelling
3.6 Secondary electron emission under proton impact: SEEP
3.7 Photoemission
3.8 Ion wake
3.9 Potential barriers
3.10 Viewing factor
3.11 Other phenomena
4 Numerical simulation of Solar wind/satellite interaction 
4.1 The SPIS numerical code
4.1.1 Presentation of the software
4.1.2 SPIS basic principles
4.1.3 Utility of the SPIS code for simulations
4.2 Illustration of Solar wind impacts on spacecraft
4.2.1 Article 1: Solar wind plasma interaction with Solar Probe Plus spacecraft
4.2.2 Article 2: Simulation study of spacecraft electrostatic sheath changes with the heliocentric distances from 0.044 to 1 AU
4.2.3 Possible effects on plasma measurements
5 Numerical particle instruments 
5.1 Definition of scientist’s needs
5.2 The SPIS-SCI Instruments
5.3 Measurement principle
5.4 Measurement of a undisturbed Maxwellian plasma: Case 1
5.5 Measurement of a disturbed Maxwellian plasma
5.5.1 Positive potential effect: Case 2
5.5.2 Negative potential effect: Case 3
5.5.3 Photoemission: Case 4 and 5
5.5.4 Secondary electron emission: Case 6
5.5.5 Combined effect of SEEE and photoelectrons: Case 7
5.6 Undisturbed non isotropic Maxwellian plasma: Case 8
5.7 Conclusion
6 Applications 
6.1 Solar Orbiter
6.1.1 Solar Orbiter simulations: configurations
6.1.2 Results analysis of SOLO at 1AU
6.1.3 Results analysis of SOLO at 1AU with a Fast Solar Wind
6.1.4 Results analysis of SOLO at 0.28AU
6.1.5 Solar Orbiter cases conclusion
6.2 Cluster
6.2.1 Cluster simulation: configuration of the CLUS@1AU case
6.2.2 Results analysis of CLUS@1AU
6.2.3 Cluster simulation conclusion
6.3 Conclusion on scientific applications and engineering
7 Conclusion and perspectives 
7.1 Achievements (English)
7.2 Critical analysis of this PhD and Perspectives (English)
7.3 Conclusion générale (français)
A Appendix 209
A.1 Physical and Geophysical Constants
A.2 Basic concepts of the distribution function
A.3 Cluster in-flight data
A.4 Article 1 – Guillemant et al. (2012): Solar wind plasma interaction with Solar Probe Plus spacecraft
A.5 Article 2 – Guillemant et al. (2013): Simulation study of spacecraft electrostatic sheath changes with the heliocentric distances from 0.044 to 1 AU
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *