Near eld thermal radiation computation

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

DEDICATION
LIST OF FIGURES
LIST OF APPENDICES
LIST OF ABBREVIATIONS
PREFACE
LIST OF PUBLICATIONS
CHAPTER I. Introduction
1.1 Motivation
1.2 Invisibility and Illusion Cloaking
1.2.1 Transformation optics cloaks using metamaterials .
1.2.2 Scattering cancellation using mantle meta-surfaces .
1.3 Thermal Energy Transfer
1.3.1 Heat conduction
1.3.2 Thermal radiation
1.3.3 Thermal radiation from meta-surfaces
1.3.4 Near eld thermal radiation computation
1.4 Duality Transformation
II. Controlling Temperature Signature using Transformation Optics
2.1 Introduction
2.2 Inverse Transformation
2.3 Inverse Transformation at the Static regime
2.4 Cloak Design Procedure
2.5 Numerical Simulation
2.6 Conclusion
III. Transformation Fluctuation Electrodynamics: Application of Transformation Optics upon Thermal Radiation Illusion
3.1 Introduction
3.2 Transformation optics and Fluctuation Electrodynamics
3.3 Transformation Fluctuation Electrodynamics
3.4 Two Dimensional E/H-polarization Thermal Radiation
3.5 Two Dimensional E/H-Polarization Camou ages
3.6 Limitations and Conclusions
IV. Cloaking and Scattering Camou age using Transformation Optics based Mantle Meta-surfaces
4.1 Introduction
4.2 Meta-surface models: GSTC versus Impedance Matrix
4.2.1 Impedance matrix representation
4.2.2 GSTC
4.3 Equivalence between Scattering Cancellation and Discontinuous T.O
4.3.1 1D discontinuous space transformation
4.3.2 2D polar/cylindrical discontinuous space transformation
4.3.3 Compression of non cylindrical shell into an inhomogeneous and spatial dispersive MS:
4.4 Conclusion
V. Circuit Model for Thermal Radiation from Arbitrary Ther- mal Emitter at Constant Temperature
5.1 Introduction
5.2 TR Pattern for Arbitrary Thermal Emitter
5.3 Equivalent Surface Admittance
5.3.1 Surface impedance/admittance: Quick Review
5.3.2 Equivalent surface admittance for arbitrary shaped emitter
5.3.3 Admittance matrix representation
5.3.4 Reciprocal surfaces
5.4 GSTC description of an Equivalent Surface
5.5 TR from Circularly Symmetric Object
5.5.1 Equivalence between surface admittance and GSTC descriptions:
5.5.2 Numerical example
5.6 TR from arbitrary thermal emitter characterized by a Surface Impedance
5.6.1 Nyquist thermal sources
5.6.2 TR from Nyquist sources
5.7 Numerical Calculation
5.8 Conclusions and Limitations
VI. Fluctuation Electrodynamics in Reciprocal Chiral Media using Field Transformation and Discontinuous Field Transfor- mation based Mantle Cloaks
6.1 Introduction
6.2 Field Transformation
6.2.1 Decomposition into longitudinal and transverse components
6.2.2 Transforming between virtual and physical spaces . 210
6.3 Transformation Fluctuation Electrodynamics
6.3.1 Covariance of FE under FT transformation
6.3.2 FE in the physical space
6.3.3 Thermal illusion using FT based cloaks
6.4 Discontinuous Field Transformation
6.4.1 GSTC model for a discontinuous FT based mantle cloak
6.4.2 Circuit model for the discontinuous FT mantle cloak
6.5 Conclusion
VII. Conclusions and Future Work
APPENDICES
A.1 Introduction
A.2 Helmholtz Equation in Isotropic and Homogeneous Media
A.3 Thermal Radiation from Planar Slabs
A.3.1 Telegraphic equation
A.3.2 TR using Z-matrix
A.3.3 Masloviski’s model
A.4 Thermal Radiation from Cylindrical Shells
A.4.1 Radial transmission line
A.4.2 TR from cylindrical shell using circuit model
A.5 Thermal Radiation from Semi-Innite Planar or Cylindrical Emitters with Constant Temperature
B.1 Informal introduction
B.1.1 Covariant vs contravariant components of a vector .
B.1.2 Geometric algebra objects
B.2 Tensor calculus convention
B.3 Space Transformation
B.3.1 Tensors of rst order
B.3.2 Tensors of second order
B.4 Coordinate Transformation of Maxwell’s and Fourier’s law of Heat Conduction
B.4.1 Maxwell’s Equations
B.4.2 Space Transformation of Fourier’s law of heat conduction
C.1 Generalized Kircho’s laws for arbitrary Thermal Emitters .
C.2 Proof for the circuit model using Landauer Formalism
E.1 Fluctuation Dissipation Theorem
E.2 Fluctuation Electrodynamics correlations: Simplied derivation
BIBLIOGRAPHY

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *