(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter I Green Radical Chemistry and Photoredox Catalysis
I.A. Green Radical Chemistry
I.A.1. Introduction to Radical Synthesis
I.A.2. To a Greener Radical Synthesis
I.B. Visible-Light Photoredox Catalysis
I.B.1. Photophysical properties of Ru(bpy)3 complexes and other photocatalysts
I.B.2. Basic of photoredox catalysis
I.B.3. Photocatalytic Generation of C-Centered Radicals
I.B.3.a. Formation involving photoreductive processes
I.B.3.b. Formation involving photooxidative processes
I.C. Conclusion
Chapter II Barton-McCombie Deoxygenation of Alcohols to Alkanes
II.A. Tin-Free Alternatives to the Barton-McCombie Deoxygenation of Alcohols to Alkanes Involving Reductive Electron Transfer
II.A.1. Abstract
II.A.2. Introduction
II.A.3. Metal-Promoted Deoxygenation
II.A.4. Electrochemical Deoxygenation
II.A.5. Electron Transfer Deoxygenation from Carbon Dioxide Radical Anion
II.A.6. Photoinduced-Electron Transfer Deoxygenation
II.A.6.a. UV Light-Induced Photodeoxygenation Reactions
II.A.6.b. Visible Light-induced Photodeoxygenation Reactions
II.A.7. Conclusion
II.B. Results: Visible-Light Photocatalytic Reduction of O-Thiocarbamates: Development of A Tin-
Free Barton-McCombie Deoxygenation Reaction
II.B.1. Objectives of the Project
II.B.2. Barton-McCombie Deoxygenation – State of the Art
II.B.3. O-Thiocarbamates as New Class of Substrates for Visible-Light Triggered Generation of Radicals
II.B.3.a Optimization of the photocatalyzed deoxygenation of alcohols
II.B.3.b. Influence of the leaving group
II.B.3.c. Synthesis of other O-thiocarbamates from the corresponding alcohols
II.B.3.d. Scope and limitations of the photoreductive deoxygenation of alcohols
II.B.4. Mechanistic Studies of the Photoredox Catalyzed
II.B.5. Miscellaneous Studies
II.B.6. Conclusion
Experimental Section – Chapter II
II.B.7. Experimental Section
II.B.7.a. General remarks
II.B.7.b. General procedures
II.B.7.c. Compound characterizations
Chapter III Visible Light-induced Photooxidative Generation of Radicals from Hypervalent Species and Development of a New Dual Photoredox/Nickel Catalysis Process
III.A. Bibliographical Background: When Photoredox Catalysis Merged with Organometallic Catalysis: Rising of Dual Catalysis Process
III.A.1. Introduction
III.A.2. Merging of Visible-light Photoredox/Transition-Metal Catalysis
III.A.3. Photoredox/Nickel Dual Catalysis
III.A.3.a. Development of the nickel catalysis
III.A.3.b. The birth of visible-light photoredox/nickel dual catalysis
III.A.3.c. Molander’s research
III.A.3.d. MacMillan and Doyle’s research
III.A.3.e. Development of the photoredox/nickel dual catalysis
III.A.4. Conclusion
III.B. Results: Alkyl Bis-Catecholato Silicates in Dual Photoredox/Nickel Catalysis: Aryl- and Heteroaryl-Alkyl Cross Coupling Reactions
III.B.1. Introduction and Objectives
III.B.2. Synthesis of Alkyl Silicates Precursors
III.B.3. Photoredox/Nickel dual catalysis process
III.B.4. Conclusion
III.C. Results: Photooxidative Generation of Alkyl Radicals by a Metal Free Catalytic Process: Applications to Radical Synthesis and Dual Catalysis
III.C.1. Introduction and objectives
III.C.2. Generation of radicals by organic oxidants
III.C.2.a. Stoichiometric oxidation
III.C.2.b. Photocatalytic oxidation
III.C.2.c. New generation of organic dyes
III.C.3. Conclusion
III.C.4. Experimental Section
III.C.4.a. General informations
III.C.4.b. General procedures
III.C.4.c. Compound characterizations
General Conclusion




