(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter.1: Paleoproterozoic Era and the Columbia supercontinent
1.1 Paleoproterozoic geodynamics
1.1.1 Earth’s Atmosphere, Hydrosphere, and Biosphere
1.1.2 Cooling of the mantle and crustal evolution
1.1.3 Stabilization of cratons
1.2 Definition and evolution of supercontinents
1.3 Evidence for a Paleoproterozoic supercontinent
1.4. Models for the Columbia supercontinent
Chapter 2: Position of the Amazonian craton in Columbia: The paleomagnetic problem
2.1 The Amazonian craton
2.2 Paleomagnetic database for the Amazonian craton – implications to the paleocontinent Columbia
2.3 Paleomagnetic problem and birth of this study
2.4 Paper “Amazonian Craton paleomagnetism and paleocontinents” (co-author)
Chapter. 3: The Carajás Province, Sampling
3.1 Target of the study: The Uatumã LIP, a Paleoproterozoic SLIP
3.2 The Carajás Province
3.3 Sampling and geological setting
3.3.1 Tucumã area
3.3.2 São Felix do Xingu area
Chapter. 4: Methodology
4.1 Paleomagnetism
4.1.1 Paleomagnetic sampling
4.1.2 Anisotropy of magnetic susceptibility (AMS)
4.1.3 The remanent magnetization
4.1.4 Demagnetization techniques
4.1.4.1 Alternating Field (AF) demagnetization
4.1.4.2 Thermal demagnetization Summary
4.1.4.3 LTD demagnetization
4.1.5 Magnetic mineralogy
4.1.6 Analysis of components
4.1.7 Field tests and paleomagnetic stability
4.1.7.1 Reversals test
4.1.7.2 Baked contact test
4.1.7.3 Regional consistency
4.1.8 Paleomagnetic pole
4.1.9 Paleogeographic reconstruction in the Precambrian
4.1.9.1 GAD through Precambrian?
4.1.9.2 Paleolatitude reconstruction
4.1.9.3 Comparison between two cratons
4.1.9.4 True Polar Wander (TPW) reconstruction
4.2 Geochronology
4.2.1 U-Th-Pb system
4.2.2 SHRIMP analysis
4.2.3 LA-ICPMS analysis
4.3 Geochronological and paleomagnetic systems
Chapter. 5: Petrology and magnetic mineralogy of the Tucumã dike swarms; overview of the dike swarm of the Uatumã event
5.1 Lithology
5.1.1 Field observations
5.1.2 Microgranitic dikes
5.1.2.1 Petrography
5.1.2.4 Sequence of crystallization
5.2 Mineral chemistry of microgranites
5.3 Geochronology
5.4 Magnetic properties
5.4.1 Magnetic Mineralogy
5.4.1.1 Hysteresis curves
5.4.1.2 Isothermal remanent magnetization (IRM) curves
5.4.1.3 Kruiver’s analysis
5.4.1.4 Day plot
5.4.1.5 Thermomagnetic curves
5.4.2 Summary for the magnetic mineralogy
5.5 Whole rock geochemistry
5.5.1 Major and trace elements geochemistry
5.5.2 Relation between petrology and magnetism
5.6 Paper of da Silva et al. (2016) (co-author)
Chapter. 6: AMS and paleomagnetic data for the Tucumã dike swarms
6.1 Magnetic Mineralogy
6.2 Anisotropy of magnetic susceptibility (AMS)
6.3 Paleomagnetic results
6.3.1 Magnetic components
6.3.2 Mean directions and paleomagnetic poles
6.4 Baked contact tests
6.5 Reliability of Tucumã poles
Chapter. 7: Turmoil before the boring billion: Paleomagnetism of the 1880 – 1860 Ma Uatumã event in the Amazonian craton
7.1 Introduction
7.2 Geological setting and lithology
7.3 Sampling and analytical methods
7.3.1 Paleomagnetism
7.3.2 Geochronology
7.4 U-Pb Geochronology
7.5 Paleomagnetic results
7.6 Baked contact test
7.7 Magnetic mineralogy
7.8 Oxide textural analysis
7.9 Discussion
7.9.1 U-Pb geochronology
7.9.2 Confidence of the paleomagnetic poles
7.9.3 Paleomagnetic discrepancies between 1.9 – 1.8 Ga
7.9.4 True polar wander and paleogeography at 1880 – 1860 Ma
7.9.5 Geological turmoil during the amalgamation of the Supercontinent Columbia
7.10 Conclusions




