(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
INTRODUCTION
1.1 Background to the problem
1.2 Statement of the problem and justification
1.3 Objectives of the study
1.4 Significance of the study
1.5 Research methodology and outline of the study LITERATURE REVIEW
2.1 Climate change and climate variability
2.2 Integrated assessment modelling (IAM)
2.2.1 The emergence of IAMs as a science-policy interface
2.2.2 Classification of IAMs
2.2.3 Application of integrated assessment models
2.2.4 Challenges for IAM studies
2.2.5 Improvements of IAMs
2.2.6 This study
3.1 Climate module
3.2 Economy module
3.3 Industrial CO2 emissions
3.3.1 Inclusion of CCS in the industrial CO2 emissions equation
3.3.2 Cost of CCS
3.3.3 Damage function
3.4 Inclusion of a Biosphere module: CO2-biomass interactions
3.4.1 Carbon flux from deforestation and deforestation control
3.4.2 Cost of the deforestation activity
3.5 Climate change abatement measures
3.5.1 Abatement policies
3.5.2 Abatement share
3.5.3 Deforestation control and afforestation
3.6 Summary: CoCEB, the Coupled Climate-Economy-Biosphere model NUMERICAL SIMULATIONS AND ABATEMENT RESULTS
4.1 Experimental design
4.2 Integrations without and with investment in low-carbon technologies and with no CCS, biomass or deforestation control
4.3 Control integration: run with biomass, no CCS and no deforestation control (new BAU) 52
4.4 Using CCS methods but no deforestation control
4.5 Integrations with inclusion of deforestation control
4.6 A mix of mitigation measures
5.1 Damage function parameters m1 and χ
5.2 Robustness to changes in the low-carbon abatement efficiency parameter ατ
5.3 Robustness to changes in the CCS abatement efficiency parameter αω
5.4 Robustness to changes in the deforestation control cost parameters
CONCLUSIONS AND WAY FORWARD
6.1 Summary
6.2 Discussion



