(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1 Elements of plasma atomic physics
1.1 Introduction
1.2 Plasma atomic processes
1.2.1 Detailed balance principle
1.2.2 Bound–bound processes
1.2.3 Bound–free processes
1.2.4 Free–free processes (Bremsstrahlung radiation)
1.3 Plasma statistical physics
1.3.1 Local Thermodynamic Equilibrium
1.3.2 Non–Local Thermodynamic Equilibrium–Collisional Radiative Model
1.4 Calculation of complex plasma spectrum–Superconfigurations approach
1.5 Atomic codes of plasma physics
1.5.1 The code HULLAC
1.5.2 The code SCO
1.5.3 The code TRANSPEC/AVERROES
Chapter 2 Radiation transfer through a plasma–Cavities thermal radiation and solid foil heating
2.1 Introduction
2.2 Radiation transfer problem
2.2.1 Hydrodynamics–radiation equations coupling
2.2.2 MULTI one dimensional radiation hydrodynamic code
2.3 Radiation confinement in the interior of an open spherical gold cavity
2.3.1 Energy exchange in the cavity interior
2.3.2 Radiation reemission of the cavity wall–Basko scaling law
2.3.3 Total radiation flux coupled with the absorption foil
Chapter 3 Laser and Instrumentation
3.1 Introduction
3.2 LULI2000 laser facility
3.2.1 Laser beam chains
3.2.2 Focalization of the laser beam–KDP crystal and random phase plate
3.3 Targets description
3.3.1 Gas–jet for spectral emission characterization
3.3.2 Spherical gold cavity for absorption spectra measurements
3.4. Diagnostic instruments
3.4.1 Bragg crystal spectrograph
3.4.2 Transmission grating XUV spectrograph
3.4.3 Thomson scattering diagnostic
3.5 Auxiliary devices and other diagnostics
3.5.1 Streak Camera
3.5.2 CCD Cameras
3.5.3 Kodak DEF film
3.5.4 Pinhole cameras
3.5.5 Streak camera differential pumping system
Chapter 4 X–ray emission spectroscopy of xenon and krypton plasmas in NLTE conditions
4.1 Introduction
4.2 Experimental setup
4.2.1 Laser beam and gas–jet targets
4.2.2 Diagnostic instruments
4.3 X–ray spectra data processing
4.3.1 Emission spectra in the keV range
4.3.2 XUV emission spectra
4.4 Determination of the plasma parameters–Thomson scattering spectra analysis
4.4.1 Helium plasma parameters
4.4.2 Xenon and krypton plasmas parameters
4.5 Characterization of the x–ray emission spectra in the keV range
4.5.1 Xenon plasma emission spectra
4.5.2 Krypton plasma emission spectra
4.6 Analysis of the x-ray spectra with TRANSPEC/AVERROES
4.6.1 Calculation of the synthetic emission x–ray spectra in the keV range
4.6.2 Calculation of the XUV emission spectra
4.7 Conclusions
Chapter 5 XUV absorption spectroscopy of radiatively heated ZnS and Al plasmas.
5.1 Introduction
5.2 Experimental setup and data processing
5.2.1 Laser beams and targets description
5.2.2 Diagnostic Instruments
5.2.3 Experimental data processing
5.3 Experimental methods
5.3.1 Deduction of the plasma transmission
5.3.2 Al and ZnS plasmas absorption spectra
5.4 Hydrodynamics of the radiatively heated Al absorption foil
5.4.1 Calculation of the radiation heating the Al foil
5.4.2 Hydrodynamic simulation of the Al foil expansion
5.5 Analysis of the Al plasma absorption spectrum
5.5.1 Characterization of the Al absorption spectrum
5.5.2 Comparison of the HULLAC synthetic Al spectrum with the measured absorption
5.6 Analysis of the ZnS plasma absorption spectrum
5.6.1 Characterization of the ZnS absorption spectrum
5.6.2 Hydrodynamic simulation of the ZnS foil
5.6.3 Comparison of the SCO synthetic ZnS spectrum with the measured absorption.
5.7 Conclusions
Conclusions and perspectives
Appendix A Elements of the Thomson scattering theory
Appendix B Mach–Zehnder interferometry experiment
Appendix C Publications




