(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Introduction
1.1 The Universe
1.2 Galaxies
1.2.1 Galaxy morphologies
1.2.2 Galaxy spectral energy distributions
1.3 Outline
2 Modeling galaxy spectral energy distributions
2.1 The star formation history of galaxies
2.1.1 The star formation history of the Universe
2.1.2 The star formation history of individual galaxies
2.2 Emission from stellar populations
2.2.1 Stellar initial mass function
2.2.2 Stellar evolutionary tracks
2.2.3 Library of stellar spectra
2.2.4 Modeling the spectral energy distribution of stellar populations
2.3 Nebular emission
2.3.1 The interstellar medium
2.3.2 Spectral features of the nebular emission
2.3.3 Nebular emission models
2.4 Attenuation by dust
2.4.1 General properties of interstellar dust
2.4.2 Modeling attenuation by dust in galaxies
2.5 Absorption by the Intergalactic Medium
2.6 Summary
3 Relative merits of different types of rest-frame optical observations to constrain galaxy physical parameters
3.1 Introduction
3.2 Modeling approach
3.2.1 Library of star formation and chemical enrichment histories
3.2.2 Galaxy spectral modeling
3.2.3 Library of galaxy spectral energy distributions
3.2.4 Retrievability of galaxy physical parameters
3.3 Constraints on galaxy physical parameters from different types of observations
3.3.1 Constraints from multi-band photometry
3.3.2 Spectroscopic constraints
3.4 Application to a real sample
3.4.1 Physical parameters of SDSS galaxies
3.4.2 Influence of the prior distributions of physical parameters
3.5 Summary and conclusion
4 Constraining the physical properties of 3D-HST galaxies through the combination of photometric and spectroscopic data
4.1 Introduction
4.2 The data
4.3 Fits of the spectral energy distribution
4.3.1 Photometric approach
4.3.2 Spectroscopic approach
4.4 Results from photometric versus spectroscopic fits
4.4.1 Redshift
4.4.2 Mass and specific star formation rate
4.5 Possible causes of discrepancy between photometric and spectroscopic estimates
4.6 Summary and next steps
5 ACS and NICMOS photometry in the Hubble Ultra Deep Field
5.1 Introduction
5.2 The data
5.3 Modeling
5.3.1 Library of spectral energy distributions
5.3.2 The ultraviolet spectral slope
5.4 Fitting procedure
5.4.1 Estimates of the physical parameters
5.4.2 Preliminary pseudo-observed scene
5.5 Discussion
5.5.1 Comparison of redshift estimates
5.5.2 Correlation between ultraviolet spectral slope and optical depth of the dust
5.6 Summary and next steps
6 Conclusions




