(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Acknowledgements
Abbreviations and acronyms list
General introduction
1 Photovoltaics, one answer to energy challenge
1.1 Energy issues
1.1.1 Current situation
1.1.2 PV in the electricity mix
1.2 Photovoltaics: from principles to technology
1.2.1 PV basic principles
1.2.1.1 Photo-carriers generation
1.2.1.2 Charge carrier separation
1.2.1.3 Charge collection
1.2.1.4 Efficiency
1.2.2 PV technologies
1.3 State of the Art on photovoltaics light concentration
1.3.1 CPV: interests & features
1.3.2 Different concentration levels for different targets
1.3.2.1 High Concentration PhotoVoltaics HCPV
1.3.2.2 Medium Concentration PhotoVoltaics MCPV
1.3.2.3 Low Concentration PhotoVoltaics LCPV
1.3.2.4 Luminescent Solar Concentrator place in CPV landscape & consistency with low size PV cells
1.4 Big picture
I Luminescent solar concentrator based concentration
2 Basics of Luminescent Solar Concentrators
2.1 Luminescent Solar Concentrator: State of the art
2.1.1 Motivations
2.1.2 Description via geometrical optics
2.1.3 Loss channels
2.1.4 Lowering front loss: Photonic Band Stop & dye anisotropic emission
2.1.5 Thermodynamics consideration
2.1.6 Record efficiencies
2.2 Modeling: Algorithm & Flowchart
2.2.1 Flowchart: global-description
2.2.2 Flowchart: quantitative description
2.2.3 Inputs/Outputs
2.2.4 Algorithmics
2.3 Big picture
3 LSC Physics
3.1 Thermodynamics limit: ideal dye case
3.1.1 Method
3.1.2 All-ideal system
3.1.3 Semi-ideal case: sensitivity analysis
3.1.3.1 Matrix absorption
3.1.3.2 Back loss
3.1.3.3 RPBS loss
3.1.3.4 PLQY loss
3.1.4 Non ideality comparison
3.1.5 Interdependencies of non ideality
3.2 Mismatch effect between dye and solar cell bandgap
3.3 Toward realistic LSC
3.3.1 Semi-ideal dye
3.3.2 Real dye
3.3.3 Realistic system
3.4 Semi-analytical formulation with MBEOs
3.4.1 Expressions derivation
3.4.2 Validation
3.4.3 Reducing MBEOs only to d
3.5 Big picture & LSC fundamental contradiction
4 CIGS-based micro solar cells coupled to Luminescent Solar Concentrator
4.1 Microcell array and LSC, a winning duo?
4.2 Prototype fabrication & LSC-VMCA validation – Generation 1
4.2.1 Fabrication
4.2.1.1 Microcell array fabrication
4.2.1.2 LSC fabrication
4.2.2 Coupling of generation 1 prototype
4.2.2.1 Measurements
4.2.2.2 Discussion
4.2.2.3 Base-Line case
4.2.2.4 Lowering side loss
4.2.2.5 Back reflection schemes
4.3 Air-gap LSC – Generation 2
4.3.1 Motivations
4.3.1.1 Geometrical effects
4.3.2 Pillar-induced loss
4.3.3 Fabrication
4.3.4 Measurements
4.4 Opal filter on LSC – Generation 2
4.4.1 Experimental
4.4.2 Optical characterization
4.4.3 Conclusion & Perspectives
4.5 Big picture
Part I Conclusions
II Nanophotonic-based concentration
5 Nano-antenna for PV applications
5.1 Nano-antenna and spectral convertor coupling
5.2 Strategies to improve light absorption in a PV absorber
5.2.1 Back surface reflector and classical limit
5.2.2 Nanophotonic light trapping grating and photonic crystal
5.2.3 Nano-wire-based light trapping
5.2.4 Plasmonics-based light trapping
5.2.5 Conclusions
5.3 Optical nano-antenna based on Metal-Insulator-Metal geometry
5.3.1 Description
5.3.2 Resonance mechanisms in a MIM structure
5.3.2.1 Fabry-Perot resonance
5.3.2.2 Plasmonic resonance
5.3.2.2.a Surface plasmon polaritons (SPP)
5.3.2.2.b Plasmonic resonance coupling
5.3.2.3 Guided-mode resonance
5.4 Rigorous Maxwell Constitutive Approximation
5.5 Big picture
6 Mono-Resonant Concentration Device (MRCD)
6.1 Optical design
6.1.1 Specifications
6.1.2 Modeling: a multi-scale problem
6.1.2.1 Algorithmic
6.1.2.2 Comprehensive approach
6.1.2.2.a Results
6.1.2.2.b Discussion
6.1.2.3 Statistical approach
6.1.2.3.a Global optimization & a particular case
6.1.2.3.b Antenna analysis
6.1.2.3.c Size and material robustness
6.1.2.4 Photon recycling
6.1.3 MRCD improvements
6.1.3.1 Reducing back loss: contacts removal
6.1.3.2 Reducing front (ext.) loss: High matrix refractive index (antireflection coating)
6.1.3.3 Combining high refractive index, no contact layers and ARC
6.1.3.4 Summary
6.2 Fabrication
6.2.1 pin junction reported on pyrex
6.2.2 Top metal patches preparation
6.2.3 Top metal patches & etching
6.2.4 Electrical connection
6.3 Electrical performances
6.3.1 Nano-diode fabrication
6.3.2 Current-Voltage measurements by AFM-CP
6.3.3 Passivation with polyphosphazen
6.3.3.1 Polyphosphazen formation
6.3.3.2 Polyphosphazen characterization
6.3.3.2.a In-situ characterization
6.3.3.2.b Others characterizations (XPS,EDX)
6.3.3.3 Polyphosphazen influence on surface recombination
6.3.3.3.a Luminescence measurements
6.4 Big picture
Part II Conclusions
General conclusions & Perspectives
Résumé en Français
Bibliography




