Principles of near-eld optics

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

Introduction
1 Raman spectroscopy at the nanoscale for electrochemistry: state of the art
1.1 Raman scattering and spectroscopy
1.1.1 Light-matter interactions in the UV-Vis and IR range
1.1.2 Theory of Raman scattering
1.1.3 Raman cross section
1.1.4 Enhancement of the Raman scattering
1.2 Fundamentals of plasmonics and surface-enhanced Raman scattering .
1.2.1 Surface Plasmons
1.2.1.1 Optical properties of noble metals
1.2.1.2 Localized Surface Plasmon Resonance
1.2.2 Surface-Enhanced Raman Spectroscopy
1.2.2.1 SERS enhancement mechanism
1.2.2.2 Electrochemical SERS
1.2.2.3 Shell-Isolated Nanoparticles Enhanced Raman Spectroscopy
1.3 Beyond the diraction limit: scanning near-eld optical microscopy .
1.3.1 Optical diraction limit
1.3.2 Principles of near-eld optics
1.3.3 Aperture SNOM
1.3.4 Scattering SNOM
1.3.5 Photothermal approach for nano-IR
1.4 Tip-enhanced Raman Spectroscopy: Raman beyond the diraction limit
1.4.1 Pioneer experimental TERS evidences
1.4.2 About TERS enhancement
1.4.3 Enhancement mechanisms and gap mode conguration
1.4.4 Spatial resolution in TERS
1.4.5 Feedback Mechanisms
1.4.5.1 AFM-TERS
1.4.5.2 STM-TERS
1.4.5.3 TF-TERS
1.4.6 Fabrication of AFM and STM-TERS tips
1.4.7 Other types of SNOM and TERS tips
1.5 Probing and inducing chemical reactions with TERS
1.5.1 Catalytic reactions monitored by TERS
1.5.2 Plasmonic tip-induced reactions
1.6 Electrochemical TERS
1.6.1 Congurations proposed for TERS in liquids
1.6.2 EC TERS
1.6.3 Challenges for EC-TERS
2 Description of TERS experiments
2.1 Description of the setup for microRaman and TERS experiments
2.2 TERS tips manufacturing
2.2.1 Fabrication of gold TERS tips
2.2.2 Fabrication of silver TERS tips
2.2.3 Prevention of TERS tips degradation
2.3 TF-TERS experiments
2.4 Conclusion
3 Tip-Enhanced Raman Spectroscopy imaging of opaque samples in organic liquids
3.1 Introduction
3.2 Description of the experimental setup
3.2.1 Optical coupling
3.2.2 Spectroscopic characteristization of the solvent and of the molecular layer
3.2.3 Focusing of the laser at the apex
3.2.3.1 TER in the air
3.2.3.2 TERS in hexadecane
3.3 TERS imaging in organic liquid
3.4 Conclusion
4 Electrochemical Tip Surface-Enhanced Raman Spectroscopy
4.1 Context
4.2 Description of the studied system: 4-NTP
4.2.1 Electrochemical study of the reduction mechanism of a 4-NTP monolayer
4.2.1.1 Description of the studied system
4.2.1.2 Gold sphere electrode functionalization and experimental details
4.2.1.3 Gold sphere electrode characterization
4.2.1.4 Irreversible reduction of 4-NTP
4.2.1.5 Electrochemical characterization of 4-ATP
4.2.1.6 Study of the conversion of 4-NTP into 4-HATP
4.2.2 Spectroscopic characteristics of the system
4.3 Spectroelectrochemical analysis of 4-NTP reduction reaction
4.3.1 Electrochemical reduction of 4-NTP monitored by ex situ TERS
4.3.2 Electrochemical reduction of 4-NTP monitored by in situ EC tip SERS
4.3.2.1 Description of the setup and experimental conditions
4.3.2.2 Ex situ tip SERS
4.3.3 Potential dependent tip SERS measurements
4.4 Conclusion
5 Electrochemical TERS imaging of functionalized gold surfaces
5.1 Introduction
5.2 Description of the setup
5.2.1 Electronic implementation
5.2.2 Cell design for EC STM-TERS measurements
5.2.3 Tip insulation and characterization
5.3 Evaluation of the system stability
5.4 EC TERS imaging
5.4.1 Laser focusing on the tip
5.4.2 Preliminary results on EC-TERS imaging
5.5 Conclusion
6 TERS characterization of surfaces derivatized with diazonium salts
6.1 Introduction
6.2 Chemistry and electrochemistry of diazonium salts
6.3 Electrochemical grafting of a monolayer of a diazonium salt
6.3.1 Electrochemical grafting and characterization of a monolayer of penuorobenzene
6.3.2 STM imaging of PFBD-grafted gold surfaces
6.3.3 TERS analysis of the PFBD-grafted surface
6.4 Electrochemical and TERS investigation of an electroactive diazonium salt
6.4.1 Electrochemical characterization of a gold electrode functionalized by FeBTPD
6.4.2 STM-TERS analysis of a FeBTP grafted surface
6.5 Spontaneous grafting of diazonium salts investigated by STM-TERS .
6.5.1 Sample preparation and characterization
6.5.2 STM-TERS analysis of the spontaneously grafted layer
6.6 Conclusion
Conclusion and outlook
A Supplementary materials to Chapter 4
A.1 Raman signature of N,N-dimethylnitrosoaniline
B Supplementary materials to Chapter 6
B.1 Electrochemical characterization of a FeBTP functionalized gold sphere electrode
B.2 Raman Spectra of reference products
B.2.1 Raman signature of 2,3,4,5,6-pentauorobenzenediazonium tetra- uoroborate (PFBD)
B.2.2 Raman signature of 4′-(phenyl)-2,2′:6′,2-terpyridine (BTP)
B.2.3 Raman signature of [Fe (4′-(phenyl)-2,2′:6′,2-terpyridine) (4- ([2,2′:6′,2-terpyridin]-4′-yl)benzenediazonium)(PF􀀀 6 )2(BF􀀀 4 )2] (FeBTPD).
B.3 Synthesis and characterization of organic compounds
B.3.1 Synthesis of 2,3,4,5,6-pentauorobenzenediazonium tetrauoroborate (PFBD)
B.3.2 Synthesis of 4′-(phenyl)-2,2′:6′,2-terpyridine (BTP)
B.3.3 Synthesis of 4-aminobenzaldehyde
B.3.4 Synthesis of 4′-(4-aminophenyl)-2,2′:6′,2-terpyridine
B.3.5 Synthesis of 4′-(4-bromophenyl)-2,2′:6′,2-terpyridine
B.3.6 Synthesis of 4-([2,2′:6′,2-terpyridin]-4′-yl)benzenethiol
B.3.7 Synthesis of [Fe (4′-(phenyl)-2,2′:6′,2-terpyridine)2(PF􀀀 6 )2] (FeBTP) derivatives
B.3.7.1 Synthesis of [Fe (4′-(phenyl)-2,2′:6′,2-terpyridine)2- (PF􀀀 6 )2] (FeBTP)
B.3.7.2 Synthesis of [Fe (4′-(phenyl)-2,2′:6′,2-terpyridine)- (4′-(4-aminophenyl)-2,2′:6′,2 terpyridine)(PF􀀀 6 )2]
B.3.8 Synthesis of [Fe (4′-(phenyl)-2,2′:6′,2-terpyridine) (4-([2,2′:6′,2- terpyridin]-4′-yl)benzenediazonium)(PF􀀀 6 )2(BF􀀀 4 )2] (FeBTPD)
Abbreviations and symbols
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *