(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
GENERAL
INTRODUCTION 1
CHAPTER I. A REVIEW OF MASS MOVEMENT HAZARD ANALYSIS IN THE MEDITERRANEAN REGION
1. Distribution and consequences of mass movements
2. Concepts
2.1. Definitions
2.2. Classification of mass movements (MM)
2.2.1. Slides
2.2.2. Falls
2.2.3. Flows
2.3. Magnitudes of mass movements (MM)
3. Factors causing mass movements
3.1. Climate
3.2. Neotectonic movements
3.3. Geology and soils
3.4. Topography
3.5. Vegetation
3.6. Human activities
4. Definitions and clarifications of MM-related terms
4.1. MM hazard term
4.2. MM vulnerability term
4.3. MM risk term
4.4. MM mapping/zoning, susceptibility and assessment
5. Evaluation of mass movements hazard
5.1. Individual sites
5.2. Regional appraisal modelling
6. Zonation of mass movements (MM)
6.1. Methods of MM hazard/susceptibility zonation
6.1.1. Qualitative methods
a. Distribution analysis
a.1. Aerial photographs (stereoscopic and stereo-oblique)
a.2. Optical satellite imagery
a.3. Microwave (Synthetic Aperture Radar Interferometry, InSAR)
a.4. Airborne thermal and lidar data
a.5. Multispectral video and hyperspectral scanners
b. Heuristic methods
6.1.2. Semi-quantitative methods
6.1.3. Quantitative methods
a. Factor overlay
b. Statistical techniques
c. Physically-based indexes
d. Distribution-free methods
e. Geotechnical/deterministic methods
6.2. MM risk assessment and mapping
6.3. MM hazard/susceptibility zonation maps
6.3.1. Hazard zonation map types
6.3.2. Spatial scale 30 6.3.3. Time scale
7. Major constraints in evaluating MM hazard zonation and relevant improvements
7.1. Uncertainties in the collected MM hazard factors
7.2. Uncertainty in the models
7.3. Inherent complexity and validation of MM hazard evaluation
8. Conclusion
CHAPTER II. DESCRIPTION OF THE MEDITERRANEAN SLOPES OF CENTRAL TO NORTHERN LEBANON (STUDY AREA)
1. Geographic location
2. Physical and morphodynamic characteristics
2.1. Geomorphology
2.1.1. Physiographic surfaces
2.1.2. Karst
2.2. Geology
2.2.1. Stratigraphy-lithology
2.2.2. Structural geology
2.3. Soils
2.4. Land cover/use
2.5. Hydrology
2.6. Climate
3. Socio-economic characteristics
4. Natural hazards in the study area
4.1. Seismic activity
4.2. Soil erosion
4.3. Flooding
4.4. Forest fires
5. Mass movements (MM) in Lebanon
5.1. Examples of mass movements in Lebanon
5.2. Socio-economic impacts of MM in Lebanon
5.3. Mitigation measures
5.4. Existing studies of MM in Lebanon
6. Conclusion
CHAPTER III. COMPARATIVE ANALYSIS OF SATELLITE IMAGES IN ASSESSING MASS MOVEMENTS IN THE STUDY AREA
1. Introduction
2. Methodology
2.1. Approach
2.2. Image characteristics of MM features
2.2.1. Elements of visual interpretation
a. Landslides’ characteristics
c. Earth flows’ characteristics
2.2.2. Ancillary data
2.2.3. Satellite data types
a. Choice
b. Sensors and processing
3. Results and discussion
3.1. Measurement of accuracy
3.3.1. Landslide detection
3.1.2. Rock and debris fall detection
3.1.3. Earth flows detection
3.2. Comparative analysis between image treatments
3.3. Field analysis and IKONOS imagery
4. Conclusion
CHAPTER IV. SORTING MAJOR TERRAIN PARAMETERS OF MASS MOVEMENTS’ OCCURENCE USING GIS AND STATISTICAL CORRELATIONS
1. Introduction
2. Choice and preparation of the influencing parameters
2.1. Approach
2.2. Field observations and causes of mass movements
2.3. Preparation of MM parameters
2.3.1. Geomorphological parameters
2.3.2. Geological and soil parameters
2.3.3. Hydrological and climatic parameters
2.3.4. Anthropogenic parameters
3. Parameters’ manipulation in a GIS environment
4. Statistical analysis
5. Results and discussion
5.1. Univariate statistical obtained correlations
5.1.1. Usefulness of univariate correlations
5.1.2. Relation between geomorphological parameters and MM
5.1.3. Relation between geological/soil parameters and MM
5.1.4. Relation between hydrologic/climatic parameters and MM
5.1.5. Relation between anthropogenic influence and MM
5.1.6. Relation between natural hazards and MM
5.2. Bivariate GIS statistical correlations obtained
5.2.1. Levels of correlation significance
5.2.2. Parameters with major correlations (1%)
5.2.3. Parameters with minor correlations (5%)
5.2.4. Parameters without any correlation 105
5.3. Low and high effect classes on MM occurrence
6. Conclusion
CHAPTER V. COMPARATIVE EVALUATION OF MASS MOVEMENT SUSCEPTIBILITY AND HAZARD MAPPING IN THE STUDY AREA
1. Introduction
2. Factors of susceptibility/hazard mapping
3. Methods for susceptibility/hazard mapping
3.1. The valuing analytical bi-univariate method (VABU)
3.2. Valuing area accumulation method (VAA)
3.3. Information value method (InfoVal)
4. Classification of MM susceptibility/hazard maps
5. Comparison and validation of the obtained susceptibility/hazard maps
6. Results and discussion
6.1. Attribute and spatial analysis of MM susceptibility maps
6.2. Correspondence analysis of MM susceptibility maps
6.3. Spatial and attribute analysis of MM hazard maps
6.4. Correspondence analysis between MM hazard maps
6.5. Examination of reliability of MM susceptibility maps
6.6. Advantages and problems of the MM used methods
7. Conclusion
CHAPTER VI. SPATIAL REPRESENTATION AND VOLUMETRIC MAPPING OF BLOCK FALLS USING GIS-BASED DECISION-TREE MODELS
1. Introduction
2. Reasons for using decision-tree modeling
3. Modeling approach
3.1. Workflow
3.2. Study site
3.3. Field survey
3.4. Statistical analysis
3.5. Building and pruning decision-tree models
4. Results and discussion
4.1. Character of block falls’ occurrence
4.2. Model performance evaluation
4.3. Production of the volumetric map of block falls
4.3.1. Mapping block falls’ volumes using the unpruned decision-trees
4.3.2. Mapping block falls’ volumes using the pruned decision-trees
4.3.3. Comparative between volumetric block falls’ maps produced using unpruned and pruned decision-trees
4.4. Advantages and problems of the preferred decision-tree model
5. Conclusion
CHAPTER VII. PRELIMINARY TESTINGS FOR MONITORING MASS MOVEMENTS
1. Introduction
2. Interferometric synthetic aperture radar (InSAR)
2.1. Background
2.2. Producing interferograms
2.3. Permanent scatter techniques
2.4. Data processing
2.5. Preliminary results and discussion
3. Global Positioning System (GPS)
3.1. Background
3.2. GPS setting
3.3. GPS campaigns
4. Conclusion
GENERAL CONCLUSION
REFERENCES




