Per-Instance Algorithm Selection

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Abstract
Résumé
Acknowledgments
Contents
1 Introduction
1.1 Algorithm Selection
1.2 Exploratory Landscape Analysis
1.3 Key Objective of the Thesis
1.4 Outline of the Thesis
2 Contributions of the Thesis
2.1 Combining Fixed-Budget Regression Models
2.2 Impact of Hyper-Parameter Tuning
2.3 Personalized Performance Regression
2.4 Adaptive Landscape Analysis
2.5 Trajectory-Based Algorithm Selection
I The Background
3 Black-Box Optimization
3.1 Black-Box Optimization Algorithms
3.1.1 CMA-ES
3.1.2 Modular CMA-ES
3.1.3 Additional Algorithms
3.2 Algorithm Performance Measures
3.3 Problem Collections
3.3.1 BBOB Test Suite
4 Exploratory Landscape Analysis
4.1 ELA Features
4.2 Choice of Features
4.3 Feature Computation
5 Algorithm Selection
5.1 Per-Instance Algorithm Selection
5.2 From Performance Regression to Algorithm Selection
5.3 State of the Art
5.4 Performance Assessment of Algorithm Selectors
II Contributions
6 Combining Fixed-Budget Regression Model
6.1 Preliminaries
6.2 Fixed-Budget Performance Regression
6.2.1 Impact of Feature Selection
6.3 Fixed-Budget Algorithm Selection
6.3.1 Impact of the Threshold Value and the Feature Portfolio
6.3.2 Impact of the Algorithm Portfolio
6.3.3 Impact of the Sample Size for Feature Extraction
6.4 Conclusions
7 Impact of Hyper-Parameter Tuning
7.1 Preliminaires
7.2 Performance Regression Quality of Different Models
7.3 ELA-Based Algorithm Selection
7.4 Sensitivity Analyses
7.5 Conclusions
8 Personalized Performance Regression
8.1 Preliminaries
8.2 Personalized Machine Learning Models
8.3 Use-Case: ELA-Based Fixed-Budget Performance Regression
8.3.1 Experimental Setup
8.3.2 BIPOP-CMA-ES Performance Prediction
8.4 Conclusions
9 Adaptive Landscape Analysis
9.1 Preliminaries
9.2 “Zooming In” into the Landscapes
9.3 Conclusions
10 Trajectory-Based Performance Regression
10.1 Preliminaries
10.2 Supervised Machine Learning for Performance Regression
10.3 Comparison with Global Feature Values
10.4 Sensitivity Analyses
10.5 Conclusions
11 General Conclusions and Outlook
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *