Different types of silicon oxide

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

INTRODUCTION
0.1 General introduction
0.2 Oxide-free silicon functionalization for single electron transport
0.3 Oxide free silicon functionalization for NQDs based solar cells
CHAPTER 1 SILICON FUNCTIONALIZATION
1.1 Introduction
1.2 Functionalization of silicon oxide surfaces
1.2.1 Different types of silicon oxide
1.2.2 Different types of molecules used
1.3 Oxide-free silicon surface functionalization
1.3.1 Oxide-free silicon surfaces
1.3.2 Functionalization methods
1.4 Conclusion
CHAPTER 2 GRAFTED ORGANIC MONOLAYER ON OXIDE-FREE SILICON FOR SINGLE ELECTRON TRANSPORT
2.1 Introduction
2.2 Coulomb blockade and Coulomb staircase for single electron transistor
2.2.1 Orthodox theory
2.2.2 Single electron transistor (SET)
2.2.3 Experimental studies
2.3 Case of an electrode being a semiconductor
2.4 Specificity of using an organic dielectric
2.4.1 Electronic transport in molecules
2.4.2 Metal anchoring contact, the role of the GOM termination
2.4.3 Effective electron mass
2.4.4 How to more accurately model a molecular junction
2.5 Conclusion
CHAPTER 3 NANOQUANTUM DOTS ON SILICON FOR HYBRID SOLAR CELLS
3.1 Introduction
3.1.1 Overview of solar cell technology
3.1.2 Hybrid nanoquantum dot technology
3.2 Properties of Nanoquantum dots
3.2.1 What is a Nanoquantum dots?
3.2.2 Energy transfer
3.3 Experimental progress toward NQDs based solar cells
3.3.1 Grafting of NQDs on planar surfaces
3.3.2 NQDs with silicon absorption
3.4 Conclusion
CHAPTER 4 EXPERIMENTAL TECHNIQUES
4.1 Fourier Transform Infrared Spectroscopy (FTIR)
4.2 X-ray Photoelectron Spectroscopy (XPS)
4.3 Scanning Tunneling Microscopy (STM)
4.3.1 Imaging
4.3.2 Fabrication of STM tip
4.3.3 Scanning Tunneling Spectroscopy (STS)
4.3.4 Other modifications
4.4 Atomic Force Microscopy (AFM)
4.5 Scanning Electron Microscopy (SEM)
4.6 Photoluminescence spectroscopy (PL)
4.7 Transmission Electron Microscopy (TEM)
4.8 Other techniques
CHAPTER 5 GOLD NANOPARTICLES ON OXIDE-FREE SILICON−MOLECULE INTERFACE FOR SINGLE ELECTRON TRANSPORT
5.1 Introduction
5.2 Experimental method
5.2.1 Preparation of Highly Ordered Monolayers on Si(111).
5.2.2 Attachment of gold nanoparticles
5.3 Characterization
5.3.1 Characterization of the SAM
5.3.2 AuNP characterization
5.3.3 STM characterization of the assembled system
5.4 Results and discussion
5.4.1 STS measurements
5.4.2 Coulomb blockade
5.5 Conclusion
CHAPTER 6 CONTROLLING THE REPRODUCIBILITY OF COULOMB BLOCKADE PHENOMENA FOR GOLD NANOPARTICLES ON AN ORGANIC MONOLAYER/SILICON SYSTEM
6.1 Introduction
6.2 Experimental
6.2.1 Sample preparation
6.2.2 Characterization techniques
6.3 Results
6.3.1 Nanoparticle size and shape
6.3.2 Crystallinity of nanoparticles
6.3.3 Nanoparticle coverage
6.3.4 Removal of ligand by annealing
6.3.5 Quality of Si/GOM interface:
6.4 Discussion
6.5 Conclusion
CHAPTER 7 COULOMB BLOCKADE: CORRELATION BETWEEN EXPERIMENTAL AND SIMULATED DATA
7.1 Introduction
7.2 IEF’s simulation software
7.2.1 Presentation
7.2.2 Parameters used
7.2.3 Capacitances of the system
7.2.4 Current flow approximation
7.3 Additional consideration regarding simulations
7.3.1 HOMO-LUMO of the GOM
7.3.2 Band Bending
7.4 Experimental results analysis
7.4.1 Parasitic oscillations
7.4.2 Step width analysis
7.5 Simulation results
7.5.1 Example of simulation results using IEF’s software
7.5.2 Band bending calculation results
7.6 Experimental correlation with simulated data
7.6.1 Band bending correction
7.6.2 Nanoparticle size dependence
7.6.3 Future work for single electron simulation
7.7 Toward single electron transistor (SET)
7.7.1 Gold strip transistor
7.7.2 Silicon on insulator (SOI) based transistor
7.8 Conclusion
CHAPTER 8 SILICON PATTERNING: AN OPTIMIZATION PROCESS FOR HYBRID PHOTOVOLTAICS
8.1 Introduction:
8.2 Fabrication of silicon nanopillars
8.3 Nanosphere lithography
8.3.1 Spin-coating
8.3.2 Fishing
8.3.3 Plasma etching and metal deposition
8.4 Metal assisted etching
8.4.1 Basic principle
8.4.2 Selected recipe
8.4.3 Effect of H2O2 concentration
8.5 Achievable structures
8.5.1 Silicon nanopillars
8.5.2 Bent Silicon nanopillars
8.5.3 Silicon polydiameter pillars
8.6 Optimizing NRET in hybrid NQDs/silicon structures by controlled nanopillar architectures
8.6.1 Introduction
8.6.2 Preparation:
8.6.3 Results and discussion
8.7 Conclusion
CHAPTER 9 DITHIOL AND DIAMINE BASED MULTILAYER CDSE NANOCRYSTAL QUANTUM DOTS FABRICATION
9.1 Introduction
9.2 Experimental method
9.2.1 Surface preparation
9.2.2 Multilayer fabrication
9.2.3 Characterization
9.3 Results and discussion:
9.3.1 Multilayer grafting
9.3.2 Effect of NQDs functionalization on PL measurement
9.3.3 Photoluminescence measurements of multilayers
9.3.4 Density of layers
9.4 Conclusion
CHAPTER 10 EFFICIENT DIRECTED ENERGY TRANSFER THROUGH SIZE-GRADIENT NANOCRYSTAL LAYERS INTO SILICON SUBSTRATES
10.1 Introduction
10.2 Preparation method
10.3 Results and discussion
10.3.1 Bilayer on glass
10.3.2 Theoretical model
10.3.3 Bilayer on Silicon
10.3.4 Efficiency
10.4 Conclusion
GENERAL CONCLUSION AND PERSPECTIVE
ABBREVIATIONS
REFERENCES

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *