(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1: locomotion principle for piezoelectric miniature robots
1.1. Introduction
1.2. Piezoelectric miniature robot
1.3. Piezoelectric actuators
1.4. Locomotion on a solid substrate
1.4.1. Wheeled locomotion
1.4.2. Walking locomotion
1.4.3. Inchworm locomotion
1.4.4. Inertial drive
1.4.5. Resonant drive
1.4.6. Friction drive
1.4.7. Summary of miniature robots on a solid substrate
1.5. Locomotion in liquid
1.5.1. Locomotion inside water
1.5.1.1. Fish swimming mechanisms
1.4.1.2. Micro-organisms swimming mechanisms
1.5.2. Locomotion at the water surface
1.5.3. Summary of piezoelectric miniature robots inside and on liquid
1.6. Locomotion in air
1.6.1. Flapping wing MAV
1.7. Conclusion and discussion
1.8. References
Chapter 2: Introduction to the numerical modeling of thin structures with piezoelectric patches
2.1. Introduction
2.2. Mechanical equations
2.2.1 Strains
2.2.2 Stresses
2.2.3 Linear elasticity
2.3. Piezoelectricity
2.4. Unknowns to be determined
2.4.1. Bending vibrations of beams
2.4.2. Bending vibrations of plates
2.5. Static equation
2.6. Dynamic equation
2.7. Numerical modeling
2.7.1. Bending vibrations of beams
2.7.2. Bending vibrations of plates
2.7.3. Variational principle
2.7.4. Time discretization: Newmark method
2.8. Conclusion and discussion
2.9. References
Chapter 3: Modeling of non-collocated piezoelectric patches bonded on thin structures
3.1. Introduction
3.2. Constitutive equations
3.2.1 Case of piezoelectric patches bonded on a beam
3.2.1. 1 Mechanical constitutive equations
3.2.1. 2 Piezoelectric constitutive equations
3.2.2 Case of piezoelectric patches bonded on a plate
3.2.2.1 Mechanical constitutive equation
3.2.2.2 Piezoelectric constitutive equation
3.3. Displacement field
3.3.1 Neutral axis
3.3.2 Neutral plane
3.4. Variational formulation
3.4.1 Case of 1D formulation
3.4.2 Case of 2D formulation
3.5. 1D finite element formulation
3.6. 2D finite element formulation
3.7. Numerical equation
3.7.1 Case of beam
3.7.3 Beam-plate numerical equation
3.7.4 Actuator – sensor
3.7.5 Actuator – Actuator
3.8 Conclusion of the chapter
3.9 Appendix: Particular cases
3.10 References
Chapter 4: Experimental validation of models
4.1 Introduction
4.2 Experimented device
4.3 Rayleigh damping
4.4 Validation process
4.4.1 Resonance frequencies validation
4.4.2 Transverse displacement validation
4.4.2.1 Case of beam
4.4.2.2 Case of plate
4.4.2.3 Piezoelectric sensors Validation
4.4.2.4 Piezoelectric capacitance Validation
4.5 Conclusion and discussion
4.6 Appendix
4.7 References
Chapter 5: traveling wave piezoelectric beam robot
5.1 Introduction
5.2 Operation principle
5.2.1 Standing wave and traveling wave
5.2.2 Operation principle case of one mode excitation
5.2.3 Operation principle case of two modes excitation
5.3 Modeling of the piezoelectric beam robot
5.4 Optimal design
5.4.1 Thickness of piezoelectric patches and material used for the beam
5.4.2 Resonance frequency
5.4.3 Optimal operating frequency
5.4.3.1 Case of one mode excitation
5.4.3.1.1 Position 1
5.4.3.1.2 Position 2
5.4.3.1.3 Influence of positions to the performance of the traveling wave
5.4.3.1.4 Actuator-absorber & Absorber-actuator
5.4.3.2 Case of two modes excitation
5.4.3.2.1 Position 1
5.4.3.2.2 Position 2
5.4.3.2.3 Influence of positions to the performance of the traveling wave
5.4.3.2.4 Two modes excitation functionality
5.5 Conclusion and discussion
5.6 Appendix
5.7 References
Chapter 6: Robot manufacturing and experimental measurements
6.1 Introduction
6.2 Fabrication
6.3 Electronic and electric circuits design and realization
6.4 Experimental validation
6.5 Robot characterization
6.6 Significance and benefits
6.7 Conclusion of this chapter
6.8 Appendix
6.9 References
Chapter 7: Overview
7. 1 Introduction
7. 2 Piezoelectric transformers
7. 3 Damping vibration of thin beams and plates
7. 4 Active control of flexible structures
7. 6 Optimization topology
7. 7 Analytical model versus finite element model
7. 8 References
Conclusion and perspectives



