(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Introduction
1.1 Rotation measurements and the CASI experiment
1.1.1 Rotation measurements
1.1.2 Gyroscope technologies
1.1.3 The CASI experiment
1.2 Short range forces and the FORCA-G experiment
1.2.1 Atom-surface interactions
1.2.2 Short range force measurements
1.2.3 The FORCA-G experiment
1.3 Outline
2 Theoretical tools for atom interferometry
2.1 Beam splitting with stimulated Raman transitions
2.1.1 Two-level system
2.1.2 Coherent coupling with stimulated Raman transitions
2.2 Coupling momentum states
2.2.1 Mach-Zehnder like interferometer for inertial sensing
2.3 Coupling Wannier-Stark states
2.3.1 Atoms in an optical 1D-lattice
2.3.2 Inter-site coupling
2.3.3 Wannier-Stark spectroscopy and interferometry
2.4 Sensitivity function formalism
2.4.1 Interferometer noise estimation
2.5 Application to the 87Rb atom
2.5.1 Frequency shifts
2.6 Interferometer signal and measurement sensitivity
2.6.1 Sensitivity, stability and noise
2.7 Interferometer phase shifts
2.7.1 Non-inertial phase shifts in a Mach-Zehnder interferometer
2.7.2 Phase shifts in Wannier-Stark interferometry
3 Atom interferometer gyroscope
3.1 Rotation measurements with the CASI gyroscope
3.2 Impact of the Raman wave fronts on the interferometer signal
3.2.1 Contrast reduction
3.2.2 Rotation phase offset
3.3 Experimental realization
3.3.1 Apparatus
3.3.2 Laser system
3.3.3 Vibration isolation platform
3.3.4 Optics for the coherent manipulation of the atoms
3.3.5 Computer control and data acquisition
3.4 Measurement sequence
3.4.1 Atom trapping, cooling and launching
3.4.2 Preparation of the interferometer state
3.4.3 Beam splitter pulse application
3.4.4 State selective fluorescence detection
3.4.5 Measurement set-up
3.4.6 Rotation phase read out
3.5 Long term stability
3.5.1 Drift sources
3.5.2 Relative beam splitter alignment and cloud overlap
3.5.3 Atom gyroscope sensitivity
3.6 Conclusions
4 Atomic short range force sensor
4.1 Accelerometry in a trapped atom interferometer
4.2 Experimental realization
4.2.1 Apparatus
4.2.2 Laser system
4.2.3 Mixed trap and Raman beam set-up
4.2.4 Lattice laser frequency stabilization
4.2.5 Computer control and data acquisition
4.3 Measurement sequence
4.3.1 Trapping and cooling
4.3.2 State preparation
4.3.3 Raman laser and microwave pulse application
4.3.4 State selective fluorescence detection
4.3.5 Compensation of differential AC-Stark shifts
4.4 Wannier-Stark spectroscopy and interferometry
4.4.1 Wannier-Stark spectra and coherent coupling
4.4.2 Influence of the transverse optical dipole trap
4.4.3 High resolution Bloch frequency measurements
4.5 Bloch frequency measurement stability
4.5.1 Mixed trap differential light shift fluctuations
4.5.2 Raman laser differential light shift fluctuations
4.5.3 Symmetrized WSR interferometer
4.5.4 Vibrations of the apparatus
4.6 Set-up modifications and stability improvement
4.6.1 Modifications
4.6.2 Improved Bloch frequency measurement stability
4.7 Coherent atom elevator
4.7.1 Coherent atomic transport using Bloch oscillations
4.7.2 Experimental realization
4.7.3 First results
4.8 Conclusions
5 Outlook
5.1 Atom interferometer gyroscope
5.2 Atomic short range force sensor
Appenix A: Allan standard deviation
Appenix B: Lattice laser frequency stabilization
Bibliography
List of Figures
List of Tables
Acknowledgements
List of Publications
Curriculum Vitae



