Importance of dynamic hydrogels

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

CHAPTER 1: INTRODUCTION 
I Introduction to the intestine
I.1.Embryonic morphogenesis of the intestine
I.1.1) Heterotypic cell signaling
I.1.2) Homotypic cell signaling
I.1.3) ECM composition
I.1.4) Mechanical forces
I.2 The maintenance of epithelium homeostasis in the adult small intestine
I 2 1) Stem cells and epithelium renewal
I.2.2) Subepithelial fibroblasts and epithelium homeostasis
I. 2. 3) The role of the epithelial environment on intestinal homeostasis
II Introduction to 3D scaffolds for tissue engineering
II.1 Artificial extracellular matrix
II.1.1) Chemical composition
II.1.2) Hydrogel physical properties
II.1.3) Importance of dynamic hydrogels
II.2 Microstructured 3D environments
II.2.1) Spatially constrained 3D cultures
II.2.2) 3D microstructured hydrogels: towards micro-organs
III In vitro models of intestinal tissues, state of the art.
III.1. Growing intestinal organoids in artificial extracellular matrix
III.2 Gut- on-chip: growing intestinal tissue in microfabricated systems
CHAPTER 2: RESULTS 
I How to engineer a scaffold that meets the specifications fixed by in vivo microenvironment?
I. 1 Characterization of collagen I matrix
I 2 Structuring the collagen
I 3 Remodeling of the matrix by epithelial cells and fibroblasts
I. 4 How to strengthen collagen 3D structures?
I. 4.1) Semi-interpenetrating polymer networks
α) Hyaluronic acid/ collagen semi interpenetrating network
β) Fibrin/ collagen semi interpenetrating network
I. 4.2 Chemical cross-linking of collagen fibrils
α) Glycation
β) Glutaraldehyde cross-linking
γ) Genipin cross-linking
II How Caco2 cells behave on a microstructured scaffold
II. 1. Influence of the 3D structure on the spatial location of proliferative cells
II. 2. Location of proliferative cells during the colonization of 3D structures
II. 3Matrix stiffness induced synchronized collective cell colonization of scaffolds
III From in vivo isolated intestinal crypts to an in vitro intestinal epithelium
III.1. Growing primary intestinal epithelium on microstructured collagen scaffold
III.1.1) Coating strategies as basement membrane substitute
III.1.2) Seeding isolated primary cells on collagen structure
III.1.3) Seeding organoids on collagen scaffolds
III.2. Proliferation patterns of primary cells on collagen scaffolds
III.3. Influence of fibroblasts on the primary epithelial cells growth
CHAPTER 3: DISCUSSION 
I To which extent can one mimic in vivo environment?
II How the mechanical and physical cues of the matrix affect epithelium behavior
II.1 Evaluation of epithelial tissue forces on the structure
II.2 Emergence of collective coordinated colonization induced by the combination of matrix stiffness and topography
II.3 Local rigidity and geometry sensing integrated at the tissue scale regulates spatial positioning of proliferative cells.
II.4. How is our model useful compared to organoids?
CHAPTER 4: CONCLUSION 
CHAPTER 5: MATERIAL AND METHODS 
BIBLIOGRAPHY

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *