Elaboration of Electrochemically Reduced Graphene Oxide (ERGO)

somdn_product_page

(Downloads - 0)

For more info about our services contact : help@bestpfe.com

Table of contents

Introduction
CHAPTER I. Bibliography
I-1. Energy Storage: Batteries and Supercapacitors
I-1.1. Batteries
I-1.1.1. History
I-1.1.2. Types of Batteries
I-1.1.3. Principle of Operation
I-1.1.4. Battery Performance
I-1.1.5. Battery Applications
I-1.2. Supercapacitors
I-1.2.1. History
I-1.2.2. Principle of Operation for EDLC
I-1.2.3. Components of the Supercapacitors
I-1.2.4. Proposed Strategies Towards Higher Performance in Supercapacitors
I-1.2.5. Supercapacitor Applications
I-2. Diagnostic Tools for Electrodes in Energy Storage
I-2.1. Electrochemical Methods
I-2.1.1. Cyclic Voltammetry (CV)
I-2.1.2. Galvanostatic Charge-Discharge method (GCD)
I-2.1.3 Electrochemical Impedance Spectroscopy (EIS)
I-2.2. Structural and Morphological Analysis: XRD, SEM, TEM, EDX and BET
I-2.2.1. X-Ray Diffraction (XRD)
I-2.2.2. Scanning Electron Microscopy (SEM) and FEG-SEM
I-2.2.3. Transmission Electron Microscopy (TEM or HRTEM)
I-2.2.4 Energy-Dispersive X-ray Spectroscopy (EDX)
I-2.2.5. Brunauer Emmett and Teller (BET)
I-2.3. Classical Electrogravimetric Investigations: Quartz Crystal Microbalance Based Methods.
I-3.The Scope and Objectives of the Ph.D. Thesis
CHAPTER II. Experimental Part
II-1. Preparation Procedure of Carbon Based Thin Film Electrodes
II-1.1. Preparation of Carbon Nanotube (CNT) Based Thin Film Electrodes (Single Wall CNT, Double Wall CNT, Multi Wall CNT)
II-1.2. Elaboration of Nanocomposite Structures
II-1.2.1. SWCNT/Prussian Blue Thin Film Electrodes
II-1.2.2. SWCNT/Polypyrrole Thin Film Electrodes
II-1.3. Elaboration of Electrochemically Reduced Graphene Oxide (ERGO) Thin Film Electrodes
II-2. Structural and Morphological Investigation Methods
II-2.1. Scanning Electron Microscopy (SEM)
II-2.2. Transmission Electron Microscopy (TEM)
II-2.3. Energy Dispersive X-rays (EDX)
II-2.4. X-ray Diffraction
II-2.5. Nitrogen Physisorption and BET Surface Area Determination
II-3. Electrochemical and (Electro)gravimetric Techniques
II-3.1. Quartz Crystal Microbalance (QCM)
II-3.1.1. Piezoelectricity
II-3.1.2. Working Principle of QCM
II-3.1.3. Experimental Set-Up
II-3.2. Cyclic Electrogravimetry(EQCM)
II-3.2.1. Principle
II-3.2.2. Experimental Set-Up
II-3.2.3. Calculation of the F(dm/dq) Function
II-3.3. Electrochemical Impedance Spectroscopy (EIS)
II-3.3.1. Principle
II-3.3.2. Experimental Set-Up
II-3.4. Ac-Electrogravimetry – A Fast Electrogravimetric Method
II-3.4.1. Principle
II-3.4.2. Experimental Method: ΔVf/ΔV
II-3.4.3. Calibration and Corrections of the Ac-Electrogravimetry System
II-3.5. Data Treatment of Ac-Electrogravimetry
II-3.5.1. Experimental data
II-3.5.2. Fitting from Mathcad Simulation Data
CHAPTER III. Ion dynamics in SWCNT Based Thin Film Electrodes
III-1. Structure and Morphology of the SWCNT Powders and Prepared Thin Film Electrodes
III-2. Classical Electrogravimetric Study of SWCNT Thin Film Electrodes in Aqueous NaCl Electrolyte
III-2.1. EQCM measurements on SWCNT Thin Film Electrodes
III-2.2. Fdm/dq Function Calculations
III-2.3. Specific Capacitance Calculations
III-3. Ac-Electrogravimetric Studies of SWCNT Thin Film Electrodes in Aqueous NaCl Electrolyte
III-3.1. EQCM versus Ac-Electrogravimetry
III-4. Ac-Electrogravimetric Study of SWCNT Thin Films in Organic Electrolytes
III-5. Conclusions
Table of Contents
CHAPTER IV. Influence of the CNT Type, Structure and Electrolyte Properties on Ion Dynamics.
IV-1. Structure and Morphology of the DWCNT and MWCNT Powder and Thin Film Electrode
IV-2. Influence of the CNT Types
IV-2.1. EQCM Study of SWCNT, DWCNT and MWCNT in Aqueous NaCl Electrolyte
IV-2.2. Ac-electrogravimetric Study of various CNT Thin Film Electrodes in Aqueous NaCl Electrolyte
IV-3. Influence of the Electrolyte Properties
IV-3.1. EQCM Study of SWCNTs in Aqueous NaCl Electrolyte at different pH
IV-3.2. Ac-electrogravimetric Study of SWCNT Thin Film Electrode in Aqueous NaCl Electrolyte at
different pH values.
IV-3.3. EQCM Study of SWCNT in Different Aqueous Electrolyte: effect of the cation size
IV-3.4. Ac-electrogravimetric Study of various SWCNT Thin Film Electrodes in Different Aqueous
Electrolytes: effect of the cation size
IV-4. Conclusions
CHAPTER V. Composite Thin Film Electrodes and Beyond Carbon Nanotubes
V-1. Composite Thin Film Electrodes
V-1.1. SWCNT/Prussian Blue Thin Film Electrodes
V-1.1.1. Structure and Morphology of the SWCNT/PB Composites
V-1.1.2. EQCM Study of the SWCNT/PB Composites
V-1.1.3. Ac-electrogravimetry Study of the SWCNT/PB Composites
V-1.2. SWCNT/Polypyrole Thin Film Electrodes
V-1.2.1. Structure and Morphology of the SWCNT/PPy Composites
V-1.2.2. EQCM Study of the SWCNT/PPy Composites
V-1.2.3. Ac-electrogravimetry Study of the SWCNT/PPy Composites
V-2. Beyond Carbon Nanotube Based Electrodes
V-2.1. Electrochemically Reduced Graphene Oxide (ERGO) Thin Film Electrodes
V-2.1.1. Structure and Morphology of the ERGO Thin Film Electrodes
V-2.1.2. EQCM Study of the ERGO Thin Film Electrodes
V-2.1.3. Ac-electrogravimetry Study of ERGO Thin Film Electrodes
V-3. Conclusions
General Conclusions
Future work
References

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *