Enhanced homojunction model

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
1.1 Motivation
1.2 Contribution
1.3 Thesis outline
2 Substrate modeling state of the Art 
2.1 Introduction
2.2 State of the art in substrate modeling
2.2.1 Substrate modeling in analog-mixed circuits
2.2.2 Substrate modeling in high voltage circuits
2.3 Conclusion
3 AUTOMICS: Pragmatic substrate parasitic extraction framework
3.1 Conventional Substrate modeling components
3.1.1 Resistance in conventional substrate modeling
3.1.2 PN junction in conventional substrate modeling
3.1.3 Capacitance in conventional substrate modeling
3.2 Enhanced substrate modeling components
3.2.1 Enhanced resistance model Minority carriers diffusion equivalent circuit
3.2.2 Enhanced PN junction model
3.2.3 Enhanced homojunction model
3.3 Conventional and enhanced substrate modeling
3.3.1 Conventional substrate extraction
3.3.2 Enhanced substrate extraction
3.4 AUTOMICS: substrate parasitic extraction tool
3.4.1 AUTOMICS tool geometrical features extraction
AUTOMICS tool pre-processing stage
AUTOMICS tool extraction stage
AUTOMICS tool post-processing stage
3.4.2 Model parameters calibration
3.5 Conclusion
4 Proposed design flow for smart power ICs 
4.1 Conventional design flow for smart power ICs
4.2 Proposed design flow for smart power ICs
4.2.1 Failure analysis and reproduction
4.2.2 Substrate parasitic extraction step
4.3 AUTOCHIP 1: Industrial case study
4.3.1 Conventional problem identification
4.3.2 Proposed failure analysis
AUTOMICS parasitic extraction of AUTOCHIP1
Substrate network simulation
4.3.3 Proposed solutions for latch-up problems
4.4 Conclusion
5 DC-DC buck converter system level design 
5.1 Power supplies in automotive industry
5.1.1 Power supply classification
5.2 DC-DC buck converter analysis
5.2.1 Switching converter analysis principles
Small ripples approximations
Inductor volt-second balance
Capacitor charge balance
5.2.2 Derivation of large-signal equations
Output voltage
Inductor current ripples
Output voltage ripples
Power Losses and efficiency of buck converter for CCM
Systematic design procedure
5.2.3 Derivation of small-signal equations
5.3 DC-DC buck converter system level design
5.3.1 Voltage mode control (VMC)
Voltage mode control closed loop
Systematic design of VMC closed loop
5.3.2 Current programmed mode (CPM) control
Control current to duty cycle transfer function
Closed loop system for CPM control
5.4 Proposed analog-mixed PI controller in low switching frequency
applications
5.5 Conclusion
6 DC-DC buck converter circuit and measurements 
6.1 DC-DC buck converter circuit operation
6.2 DC-DC buck converter circuit building blocks
6.2.1 Switches and drivers circuits
Switches
Switches gate drivers
6.2.2 Pulse level shifter circuit
6.2.3 HV comparator circuit
6.2.4 Bandgap circuit
6.2.5 Oscillator circuit
6.2.6 Sawtooth generator circuit
6.2.7 Proportional Amplifier
6.2.8 Voltage-to-current converter and current limiter
6.2.9 Deadtime generator circuit
6.3 Circuit simulation results
6.4 Chip floorplanning
6.5 Chip measurements
6.5.1 Low voltage measurements
6.5.2 High voltage measurements
6.6 Effects of the substrate coupling on the bandgap voltage .
6.6.1 Bandgap circuit
6.6.2 Substrate injection current mechanism
Test case 1: the body and substrate diodes are considered
Test case 2: the substrate diode is only considered
6.7 Conclusion
7 Summary and Future Work 
7.1 Thesis summary
7.2 Future work
Publications
Appendix A. DC-DC buck converter Power losses 
References

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *