Determination of the inflow boundary condition

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Introduction
1 State of the art
1.1 Buoyant convection from isolated sources
1.2 Vertical steady plumes in a uniform unconfined environment
1.2.1 Laminar plane plumes
1.2.2 Laminar round plumes
1.2.3 Transition from laminar to turbulent plumes
1.2.4 Turbulent plumes
1.3 Laminar starting plumes
1.4 Plumes in confined environment
1.4.1 Theoretical models
1.4.2 Validation of the models
1.5 Numerical study of plumes
1.6 Motivation
2 Physical modeling
2.1 Governing equations for a binary mixture fluid flow at constant pressure and temperature ( [Taylor and Krishna, 1993])
2.1.1 Mass transport equation
2.1.2 Momentum equation
2.1.3 Equation relating the density and the mass fraction
2.1.4 Low Mach approximation
2.2 Estimation of the physical properties
2.2.1 The case of a gas mixture
2.2.2 The case of a glycerol-water mixture
2.3 The complete set of governing equations in dimensionless form .
2.4 Dimensionless parameters
3 Numerical methods
3.1 Spatial discretization
3.2 Temporal discretization
3.3 Velocity-pressure coupling: fractional-step projection method
3.4 Determination of the inflow boundary condition
3.5 Solution of the algebraic equations
3.5.1 Alternating Direction Implicit (ADI) method
3.5.2 Multigrid method
3.6 Implementation of the numerical method, code performance
3.7 Conclusion
4 Laminar starting forced plumes at high Schmidt numbers: validation with experimental data
4.1 Introduction
4.2 Description of the experiment of [Rogers and Morris, 2009]
4.3 Numerical set up
4.3.1 Numerical set up
4.4 General plume characteristics
4.4.1 Plume outer shape
4.4.2 Plume ascent velocity
4.4.3 Plume internal structure
4.5 Parametric study for the numerical simulation
4.5.1 Influence of variable viscosity
4.5.2 Influence of the inlet velocity profile
4.5.3 Influence of the convection schemes
4.5.4 Influence of the spatial resolution
4.6 Comparison with the experiment of [Rogers and Morris, 2009] .
4.6.1 General plume shape
4.6.2 Ascent velocity
4.6.3 Morphology of the plume heads
4.7 Conclusions
5 Buoyant jets of helium-air mixture or helium in a partially confined air-filled cavity
5.1 Introduction
5.2 Plane plume simulations
5.2.1 Physical configuration and numerical set-up
5.2.2 Flow description
5.2.3 Transition to unsteadiness
5.2.4 Comparison with scaling laws and similarity theory of laminar,plane plumes
5.3 Axisymmetric plume simulation
5.3.1 Description of the test cases
5.3.2 Description of the flow
5.3.3 Comparison with the finite element results for cavity 3/5 .
5.3.4 Comparison with GAMELAN experiment and other numerical results
5.3.5 Comparison with the model of [Worster and Huppert, 1983] .
5.4 Conclusions
Conclusion
List of Figures
List of Tables
A Grid convergence study of helium-air round plume simulations
Bibliography 

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *