Physical phenomena in MRE behavior

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

Abstract
Acknowledgment
1 Introduction
1.1 MREs among smart materials
1.2 Classification within MREs
1.3 Main MRE research topics and applications
1.4 Physical phenomena in MRE behavior
1.4.1 Mechanical behavior of MREs as particle-filled composites
1.4.2 Magnetic response of MREs
1.4.3 Magnetic field-dependent modulus
1.4.4 Deformation under magnetic field
1.5 Approaches to the modeling of MREs
1.5.1 Micro-mechanically based modeling of MREs
1.5.2 Phenomenological continuum description
1.6 Previous experimental characterizations of magneto-elastic properties at finite strain
1.6.1 Overview of experimental studies on MREs
1.6.2 Magneto-mechanical experimental characterization using continuum models
1.7 Scope and organization of the present work
2 Materials and samples
2.1 Introduction
2.2 Sample shape for coupled magneto-mechanical testing
2.3 Materials and fabrication procedure
2.3.1 Materials selection
2.3.2 Fabrication procedure
2.3.3 Molds and stands
2.4 Study of interfacial adhesion
2.4.1 Samples preparation
2.4.2 Scanning electron microscopy
2.4.3 Macroscopic mechanical tests
2.4.4 Discussion of results
2.5 Conclusion
3 Magneto-mechanical characterization
3.1 General theoretical framework
3.1.1 Governing equations
3.1.2 Free energy function for transversely isotropic MREs
3.2 Constitutive parameter identification
3.2.1 Reduced form of the free energy function
3.2.2 Free energy density and response functions
3.2.3 Different test cases
3.3 Magneto-mechanical characterization setup
3.3.1 Electromagnet
3.3.2 Tension system
3.3.3 Mechanical diagnostics
3.3.4 Magnetic measurements
3.4 Experiments and parameter identification
3.4.1 Testing protocol
3.4.2 Experimental results
3.4.3 Parameter identification results
3.5 Conclusion
4 Numerical implementation
4.1 Introduction
4.2 Total Lagrangian variational formulation of the fully-coupled magnetomechanical problem
4.2.1 General framework for a non-uniform applied magnetic load
4.2.2 Framework for the prototype device simulation
4.3 Axisymmetric FEM formulation
4.3.1 Discretized variational principle
4.3.2 Axisymmetric space
4.3.3 FEM implementation
4.4 Problem geometry/mesh, initial/boundary conditions and material parameters
4.5 Simulation results
4.6 Experimental validation
4.6.1 Haptic surface prototype
4.6.2 Experiments
4.7 Conclusion
5 Conclusion and future work
5.1 Conclusion
5.2 Future work
A Appendix
A.1 Derivation of the traction response
A.2 Coefficients of the force vector and the stiffness matrix
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *