AFM images of the bare ITO

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

I Metal/organic interfaces 
I.1 Semiconductor description
I.1.1 Inorganic semiconductor
a) Theoretical description
b) Electrode for organic electronics
I.1.2 Organic semiconductor
I.2 Metal/organic interface
I.2.1 Layer interactions
I.2.2 Energetic level alignment
I.3 X-ray characterizations
I.3.1 Physical principles
I.3.2 Sampling depth
I.3.3 X-ray absorption
II DIPO-Ph4 layer on ITO substrate 
II.1 ITO/DIPO-Ph4 layer morphology
II.1.1 DIPO-Ph4 growth mode on indium tin oxide
II.1.2 Access to the first deposited layer and to the crystallized material
II.2 Molecular orientation
II.2.1 Molecular description
II.2.2 Absorption spectroscopy
IIIITO/DIPO-Ph4 interface 
III.1 ITO characterization
III.1.1 Electronic properties
III.1.2 Carrier concentration
III.1.3 Electron energy level scheme
III.2 ITO/DIPO-Ph4 interface
III.2.1 Core levels XPS spectroscopy
a) Indium and tin core levels
b) Carbon and oxygen levels
c) DFT calculation correlation
III.2.2 Valence band energy level
III.2.3 Electron energy level scheme
III.3 Charge transfer from DIPO-Ph4 to ITO
III.3.1 Resonant photoemission spectroscopy
III.3.2 ITO/DIPO-Ph4 interface
a) C K-edge
b) O K-edge
III.3.3 Pump-probe experiments
IV DIPO-Ph4 as interfacial layer 
IV.1 Solar devices
IV.1.1 Photovoltaic mechanism
IV.1.2 Photovoltaic devices
a) Photovoltaic generations
b) Organic solar cells
c) Interfacial layer
IV.2 Organic electronics application
IV.2.1 Energetic alignment
IV.2.2 Photovoltaic response
V DIP heteroatom effect 
V.1 ITO/DIP layer morphology
V.1.1 Molecular description
V.1.2 DIPS-Ph4 and DIPSe-Ph4 growth mode
V.2 Electronic properties
V.2.1 Core levels XPS spectroscopy
V.2.2 Valence band energy level
V.2.3 Electron energy level scheme

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *