(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION
ABSTRACT
DEDICATION
ACKNOWLEDGEMENTS
LIST OF ABBREVIATIONS/SYMBOLS
GENERAL INTRODUCTION
1. STATE OF THE ART: FABRICATION AND PHOTOCATALYTIC PROPERTIES OF TIO2 NANOMATERIALS
1.1. Introduction
1.2. Principles of photocatalysis
1.3. TiO2 nanomaterials morphologies and crystallographic structures
1.4. TiO2 nanomaterials synthesis
1.4.1. Sol-gel method
1.4.2. Sol method
1.4.3. Hydrothermal method
1.4.4. Solvothermal method
1.4.5. Chemical/physical vapor deposition
1.4.6. Electrochemical methods
1.4.7. Direct oxidation method
1.4.8. Surfactant-controlled method
1.4.9. Other methods
1.5. Preparation of quasi-one-dimension TiO2 nanostructure
1.5.1. Why quasi-one-dimension TiO2 nanostructure?
1.5.2. Growth of quasi-one-dimension TiO2 nanostructure
1.5.3. Alkaline hydrothermal method and its parameters
1.5.4. Quasi-one-dimension TiO2 nanostructure formation mechanisms for alkaline hydrothermal method
1.6. Plasma thin film and its applications
1.6.1. Advantages of TiO2 thin film or coating
1.6.2. Plasma enhanced chemical vapor deposition (PECVD)
1.6.3. Magnetron sputter deposition
1.7. Modifications of TiO2 nanomaterials
1.7.1. Modifying TiO2 crystal structure and morphology
1.7.2. Metal and nonmetal doping
1.7.3. Depositing noble metals
1.7.4. Semiconductor coupling
1.7.5. Enhancing TiO2 with carbon materials
1.8. Summary of the research objectives
1.9. References
2. MATERIALS AND EXPERIMENTAL METHODS
2.1. Introduction
2.2. Chemicals
2.3. Characterization instruments and processes
2.3.1. Electron microscopy
2.3.2. Raman spectra
2.3.3. X-ray diffraction (XRD) analysis
2.3.4. Diffuse reflectance UV-visible spectroscopy (DRS) and dye concentration
2.3.5. X-ray photoelectron spectroscopy (XPS)
2.3.6. Brunauer–Emmett–Teller (BET) and specific surface area (SSA)
2.3.7. High performance liquid chromatograph (HPLC)
2.3.8. Gas chromatograph (GC)
2.3.9. Photoelectrochemical measurements
2.3.10. Photocatalytic reactor
2.3.11. Optical emission spectroscopy of plasma
2.3.12. Thin film photocatalytic activity test
2.4. Graphene oxide (GO) and quasi-one-dimension (Q1D) TiO2 synthesis
2.4.1. Synthesis of graphene oxide (GO)
2.4.2. Hydrothermal synthesis
2.4.3. Plasma process used for deposition
2.5. References
3. THE IMPACT OF HYDROTHERMAL FACTORS ON QUASI-ONE-DIMENSION TIO2 NANOSTRUCTURE, CRYSTAL SIZE AND BANDGAP
3.1. Introduction
3.2. Experimental
3.2.1. Preparation of the quasi-one-dimension TiO2 photocatalyst
3.2.2. Characterization studies
3.2.3. Experimental design, optimization study and statistical analysis
3.3. Results and discussion
3.3.1. Morphology
3.3.2. Bandgap (eV)
3.3.3. Analysis of the experimental design
3.3.3.1. Impacts of factor variables on the bandgap
3.3.3.2. Model fitting using analysis of variance (ANOVA)
3.3.3.3. Factor interaction plots
3.3.4. Response model verification, optimization and validation
3.3.5. Phase structure analysis
3.3.6. Crystal size and specific surface area (SSA)
3.3.7. Effects of crystal size/specific surface area on Q1D TiO2 bandgap
3.4. Conclusions
3.5. References
4. OPTIMIZING QUASI-ONE-DIMENSION TIO2 PHOTOCATALYST: PHOTODEGRADING AQUEOUS ORGANIC POLLUTANTS AND PHOTOCATALYTIC HYDROGEN PRODUCTION
4.1. Introduction
4.2. Photocatalytic experiments
4.2.1. Preparation of the Q1D nanometric TiO2 photocatalyst
4.2.2. Photocatalysis of selected organic pollutants
4.2.3. Photocatalytic hydrogen production
4.3. The impact of hydrothermal factors on the photodegradation of aqueous organic pollutants
4.3.1. Selecting model chemicals to assess implementing photodegradation as a technology for treating wastewater effluents and drinking water supplies
4.3.2. Experimental design and statistical analysis
4.3.3. Rhodamine b photocatalysis
4.3.4. Impact of hydrothermal conditions on the apparent rhodamine b degradation constant k
4.3.5. Modeling and optimization of hydrothermal synthesis
4.3.6. Response surface model development
4.3.7. Response surface model verification
4.3.8. Photocatalysis of other pollutants using the optimized Q1D TiO2
4.3.9. Photodegradation conclusions
4.4. The impact of hydrothermal synthesis factors on photocatalytic hydrogen production from water-ethanol mixture
4.4.1. Introduction: Photocatalytic hydrogen production
4.4.2. Experimental design and statistical analysis
4.4.3. Photocatalytic hydrogen production
4.4.4. Impact of hydrothermal conditions on hydrogen production rate
4.4.5. Modeling and effects of factors on response variable hydrogen production rate
4.4.6. Response surface model development
4.4.7. Response surface model verification
4.4.8. Phase structure, crystal size and bandgap
4.4.9. Conclusions: Photocatalytic hydrogen production
4.5. Conclusions
4.6. References
5. ENHANCED TIO2 NANORODS PHOTOCATALYSTS WITH PARTIALLY REDUCED GRAPHENE OXIDE AND AG NANOPARTICLES FOR DEGRADING AQUEOUS HAZARDOUS POLLUTANTS
5.1. Introduction
5.2. Experimental
5.2.1. Synthesis of reduced graphene oxide-TiO2 nanorods (designated as GT) photocatalyst with varied RGO atomic oxygen-to-carbon (O/C) ratio
5.2.2. Ag-RGO-TiO2 nanorods (designated as Ag-GT) synthesis and Ag-GT film preparation
5.2.3. Characterization studies
5.2.4. Photoelelctrochemical measurements
5.2.5. Photocatalytic activity under ultraviolet (UV) light
5.2.6. Ag-GT film photocatalytic activity under visible irradiation
5.3. Graphene based TiO2 nanorods (GT) photocatalyst with optimum RGO atomic oxygen-to carbon (O/C) ratio
5.3.1. The graphene based TiO2 nanorods (GT) morphology and phase structure 166
5.3.2. Removing oxygen-containing groups and adjusting the the atomic oxygen-to-carbon (O/C) ratio of reduced graphene oxide (RGO)
5.3.3. Interaction between reduced graphene oxide (RGO) and TiO2 nanorods (TNRs)
5.3.4. Optical response and bandgap
5.3.5. Charge transportation and separation
5.3.6. Photocatalytic activity
5.3.7. The mechanism of reduced graphene oxide (RGO) atomic oxygen-to-carbon (O/C) ratio
5.4. Ag-reduced graphene oxide-TiO2 nanorods (Ag-GT) photocatalyst with optimum Ag loading
5.4.1. Morphology analysis
5.4.2. Structure analysis
5.4.3. Diffuse reflectance UV-visible spectroscopy (DRS) and bandgap
5.4.4. Photoelectrochemical studies
5.4.5. Photocatalytic activity
5.4.6. Reaction mechanism
5.5. Conclusions
5.6. References
6. ONE-STEP DEPOSITION OF NANO-AG-TIO2 COATINGS BY ATMOSPHERIC PRESSURE PLASMA JET FOR DEGRADING TRACE PHARMACEUTICAL USING SOLAR ENERGY
6.1. Introduction
6.2. Experimental Methods
6.2.1. Optical emission spectroscopy of atmospheric pressure plasma jet (APPJ) plasma
6.2.2. Thin film characterization
6.3. Results and discussion
6.3.1. Plasma jet characterization
6.3.2. Morphology and Ag diffusion in composite Ag-TiO2 thin films
6.3.3. Effect of Ag incorporating on the crystal structure
6.3.4. Photocatalytic activity
6.3.5. Mechanism of photocatalytic oxidation by Ag-TiO2
6.4. Conclusions
6.5. References
7. GENERAL CONCLUSIONS AND RECOMMENDATIONS
RESUME DE LA THESE
8. ENGINEERING SIGNIFICANCE
APPENDICES
Chapter 3: copyright
Chapter 5: copyright
LIST OF PUBLICATIONS AND CONFERENCES
VITA AUCTORIS




