B-hadron Production Rates

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction 
2 Theory of Bottom Production, Fragmentation and Decay 
2.1 Overview: The Life Story of a Bottom Quark
2.2 Bottom Quark Production in The Hard Process
2.2.1 Bottom Quark Production at LEP
2.2.2 Bottom Quark Production at the TeVatron
2.3 Theoretical Aspects of b Fragmentation
2.3.1 Definitions of Fragmentation Functions
2.3.2 Perturbative and Non-perturbative Parts
2.3.3 Perturbative QCD
2.3.3.1 Theoretical QCD Calculations
2.3.3.2 Parton Showers in Monte Carlo Generators
2.3.4 Non-perturbative QCD
2.3.4.1 Hadronization in Monte Carlo Generators
Independent Hadronization
Cluster Hadronization
String Hadronization
Baryon Production
2.3.4.2 Phenomenological Hadronization Models
The Peterson Model
The Collins-Spiller Model
The Kartvelishvili Model
The Lund Symmetric Fragmentation Function
The Bowler Model
2.4 Excited States
2.5 B-hadron Production Rates
2.6 B Decays
3 Experimental Framework I- The LEP Collider and the DELPHI Experiment 
3.1 The Large Electron Positron Collider
3.2 The DELPHI Experiment
3.3 Tracking Detectors
3.3.1 The Vertex Detector
3.3.2 The Inner Detector
3.3.3 The Time Projection Chamber
3.3.4 The Outer Detector
3.4 Other Detectors
3.4.1 Ring Imaging Cherenkov Detectors
3.4.2 Electromagnetic and Hadron Calorimeters
3.4.3 Scintillators
3.4.4 Muon Chambers
3.5 Particle Identification and Reconstruction
3.5.1 Track Reconstruction
3.5.1.1 Primary Vertex Reconstruction
3.5.1.2 Impact Parameter Reconstruction
3.5.2 Hadron Identification
3.5.3 Lepton Identification
3.6 DELPHI Monte-Carlo Simulation
3.7 Data Reprocessing
4 Experimental Framework II- The TeVatron Collider and the CDF Experiment 
4.1 TeVatron – the Source of pp Collisions
4.2 The CDF-II Detector
4.3 Standard Definitions in CDF-II
4.4 Tracking Systems
4.4.1 Silicon Tracking Detectors
4.4.2 Central Outer Tracker
4.4.3 Pattern Recognition Algorithms
4.4.4 Momentum Scale
4.5 Time of Flight
4.6 Calorimeters
4.7 Muon Systems
4.8 Triggering
4.8.1 Level 1 Trigger
4.8.2 Level 2 Trigger
4.8.3 Level 3 Trigger
4.9 Luminosity Measurement
5 B Fragmentation at DELPHI 
5.1 General Event Selection and Jet Energy Measurement
5.1.1 Data/Monte-Carlo comparison and adjustments
5.1.1.1 Accuracy of track reconstruction
5.1.1.2 Efficiency and track energy distribution
5.1.2 Jet energy reconstruction
5.2 B-Energy Reconstruction
5.3 Selection of B Candidates
5.4 Measurement of the B-Fragmentation Distribution
5.4.1 Fit Results on Real Data Events
5.4.2 Fit Results on Simulated Events
5.5 Systematic Uncertainties
5.5.1 Real Data and Simulation Tuning
5.5.1.1 Energy Calibration
5.5.1.2 Level of the Non-b Background
5.5.1.3 Track Energy and Multiplicity Tuning
5.5.1.4 Jet Multiplicity
5.5.1.5 Summary
5.5.2 Physics Parameters
5.5.2.1 b-Hadron Lifetimes
5.5.2.2 B Production Rate
5.5.2.3 b-Hadron Charged Multiplicity
5.5.2.4 g!bb Rate
5.5.2.5 Summary
5.5.3 Parameters Used in the Analysis
5.5.3.1 Parametrization of the Weight Function
5.5.3.2 b-Tagging Selection
5.5.3.3 Jet Clustering Parameter Value
5.5.3.4 Level of Ambiguous Energy
5.5.3.5 Secondary Vertex Charged Multiplicity
5.5.3.6 Summary
5.6 Comparison with Other Experiments
6 Extraction of the x-Dependence of the Non-perturbative QCD Component 
6.1 Introduction
6.2 Extracting the x-Dependence of the Non-perturbative QCD Component
6.3 x-Dependence Measurement of the Non-perturbative QCD Component
6.3.1 The Perturbative QCD Component is Provided by a Generator
6.3.2 The Perturbative QCD Component is Obtained by an Analytic Computation Based on QCD
6.4 Results Interpretation
6.4.1 Comparison with Models
6.4.2 Proposal for a New Parametrization
6.5 Checks
6.5.1 The Use of a Fitted Parametrization
6.5.2 The Effect of Parametrization
6.5.3 Number of Degrees of Freedom
6.5.4 Using a Different Tuning of the Monte Carlo
6.6 Combination of Fragmentation Distributions from All Experiments
6.7 Comparison of Results for All Experiments
6.8 Thoughts about Fitting Moments of Fragmentation Functions
6.9 Charm Fragmentation
6.10 Conclusions
7 B Fragmentation and Related Studies at CDF 
7.1 Introduction
7.2 Data Sample
7.2.1 Reconstruction of B± !J/yK±
7.2.2 Subtracting the Backgrounds in the Data
7.3 Monte Carlo Samples
7.3.1 General Description
7.3.2 PYTHIA Parameters
7.4 Outline of the Analysis Method
7.5 Preliminary Monte Carlo Studies
7.6 Data and Monte Carlo Comparisons
7.6.1 Comparisons with msel=5 Samples
7.6.2 Comparisons with an msel=1 Sample
7.7 A Method of Fitting the Fragmentation Function Parameters
7.8 An Estimate of the b Production Cross Section
7.8.1 Evaluation of Efficiency
7.8.2 The Inclusive b Quark Production Cross Section
7.8.3 Statistical Error Estimation
7.8.4 Systematic Error Estimation
7.8.4.1 Luminosity
7.8.4.2 Branching Ratios and Production Fraction
7.8.4.3 Trigger and Reconstruction Efficiencies
7.8.5 Comparison with Other Measurements and with Theoretical Predictions
8 Conclusion 
A The Mellin Transformation 
B Fitting Histograms of Singular Error Matrices 
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *