Bias of haloes and galaxies

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 From the Big Bang to galaxies 
1.1 Cosmological background
1.1.1 Content of the Universe
1.1.2 The metric of an expanding Universe
1.1.3 Redshift
1.1.4 Friedmann equations
1.1.5 The standard model of cosmology
1.2 The cosmic microwave background
1.2.1 The early Universe and the CMB
1.2.2 Late-time anisotropies
1.2.3 Summary of CMB observations
1.3 Summary of upcoming galaxy surveys
1.4 Growth of inhomogeneities
1.5 Statistics of the distribution of matter
1.5.1 Power spectrum
1.5.2 Angular power spectrum
1.5.3 Projected observables
1.6 Non linear scales
1.6.1 Modelling non linear evolution
1.6.2 Halo mass function
1.7 Astrophysical effects on galaxy power spectrum
1.7.1 Bias of haloes and galaxies
1.7.2 Redshift space distortions
2 Galaxy evolution within dark matter haloes 
2.1 Galaxies and haloes evolution
2.1.1 Gas cooling
2.1.2 Galaxy formation efficiency
2.1.3 Stellar to halo mass relation
2.2 Galaxies
2.2.1 The COSMOS field
2.2.2 Stellar mass function
2.3 Dark matter haloes
2.3.1 Halo mass function
2.3.2 Fit on dark matter simulation
2.4 Estimating the stellar-to-halo mass relation
2.4.1 Implementation
2.4.2 Fitting procedure
2.4.3 Main sources of SHAM uncertainties
2.5 Results: stellar-to-halo mass relation in COSMOS
2.5.1 Stellar-to-halo mass ratio
2.5.2 Variation of the peak halo mass with redshift
2.5.3 Impact of the halo mass function on our results
2.5.4 Stellar to halo mass ratio evolution at fixed halo mass
2.5.5 Interpretation of this evolution
2.6 SHMR from a hydrodynamical simulation
2.7 Cold molecular gas and dark matter haloes
2.7.1 Linking gas mass to stellar mass
2.7.2 Linking gas mass to halo mass
2.7.3 Results
2.8 What could explain a redshift evolution of quenching ?
2.9 Conclusions
3 The cosmological power of a joint analysis of Euclid and CMB surveys 
3.1 Interests of probe combination
3.2 Cosmological forecasts
3.2.1 The likelihood function
3.2.2 Fisher analysis
3.2.3 MCMC as an alternative to Fisher
3.2.4 Fisher matrix using angular power spectra
3.3 Modelling observables
3.3.1 Galaxy observables
3.3.2 CMB lensing
3.3.3 CMB temperature and polarisation
3.4 Euclid observables
3.4.1 Introducing the Euclid mission
3.4.2 Implementation of the Euclid observables
3.5 CMB experiments and noise models
3.5.1 Planck
3.5.2 Simons Observatory
3.5.3 CMB-Stage 4
3.6 Forecasting cosmological constraints
3.6.1 Extensions of CDM
3.6.2 Fisher matrix
3.6.3 Scenarios for the combined analysis
3.6.4 Limits of the numerical resolution
3.7 Results
3.8 Conclusion
4 An alternative probe for galaxy surveys 
4.1 Introduction
4.2 Surveys under consideration
4.2.1 The DESI experiment
4.2.2 The Euclid spectroscopic survey
4.2.3 Tomography
4.3 Observables
4.3.1 Galaxy angular density fluctuations
4.3.2 Angular redshift fluctuations
4.3.3 Angular power spectra
4.3.4 Numerical recipes
4.4 Signal to noise forecasts
4.5 Fisher forecasts
4.5.1 Results for the CDM model
4.5.2 Extension to CPL Dark Energy parametrization
4.5.3 Combining with CMB lensing
4.6 Discussion
4.7 Conclusion
5 Conclusion 
A CMB lensing 
A.1 Introduction
A.2 Statistical anisotropy
A.3 Quadratic estimator
B Impact of massive neutrinos 
C Related publications

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *