(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Introduction
1 State of the Art
1.1 Context
1.1.1 HVDC cable manufacturing
1.1.2 HVDC cable system testing
1.1.3 HVDC cable lifetime modeling
1.2 Electrical properties and related methods
1.2.1 Conductivity
1.2.2 Space Charge (SC)
1.3 Charge transport and aging modeling
1.3.1 Analytical model for charge transport
1.3.1.1 Space Charge Limited Current (SCLC)
1.3.1.2 Poole-Frenkel [1]
1.3.1.3 Variable Range Hopping (VRH)
1.3.2 Analytical model for charge injection
1.3.2.1 Fowler-Nordheim injection
1.3.2.2 Schottky injection [2]
1.3.2.3 Interface effect
1.3.3 Breakdown physical process
1.3.3.1 Electrical breakdown
1.3.3.2 Mechanical breakdown
1.3.3.3 Thermal runaway
1.3.4 Aging phenomenology and modeling
1.3.4.1 Dakin, inverse power and Eyring models (1948)
1.3.4.2 Crine model
1.3.4.3 DMM (Dissaldo/Montanari/Mazanti) model
1.3.4.4 Lewis electromechanical model
1.3.4.5 Summary
1.4 Physical heterogeneity effect
1.4.1 Description and formation
1.4.1.1 Description
1.4.1.2 Formation
1.4.2 Behavior under temperature and electric field
1.4.2.1 Annealing effect
1.4.2.2 Relaxation processes
1.4.2.3 Behavior under electric field
1.4.3 Effect on electrical properties: model and experiment
1.4.3.1 Charge transport model in specific heterogeneous semicrystalline polymeric structure
1.4.3.2 Effect on conductivity and space charge
1.5 Chemical heterogeneities
1.5.1 Charge transport model in polymeric structures with chemical residues .
1.5.2 Behavior under temperature and electric field
1.5.2.1 Behavior under temperature
1.5.2.2 Behavior under electric field
1.5.3 Peroxide decomposition products (PDP)
1.5.3.1 Formation
1.5.3.2 Diffusion properties
1.5.3.3 Effect on space charge and conductivity
1.5.4 Antioxidants
1.5.4.1 Formation
1.5.4.2 Effect on space charge and conductivity
1.5.5 Water content
1.5.5.1 Formation
1.5.5.2 Diffusion properties
1.5.5.3 Effect on space charge and conductivity
1.5.6 Oxidation
1.5.6.1 Formation
1.5.6.2 Effect on space charge and conductivity
2 Experimental approach
2.1 Materials
2.1.1 PE-based material
2.1.2 PP-based material
2.1.3 PET-based material
2.2 Physical and chemical characterization
2.2.1 Morphological analysis
2.2.1.1 Differential scanning calorimetry (DSC) method
2.2.1.2 Analysis on material models
2.2.1.3 Crystallinity variation with temperature
2.2.2 Chemical composition
2.2.2.1 Methods
2.2.2.2 Results
2.3 Dielectric spectroscopy measurement
2.3.1 Setup description
2.3.2 Morphological impact on permittivity
2.3.3 Glass transition and crystalline phase influence on conductivity
2.4 Current density measurement
2.4.1 Setup description
2.4.2 Test procedures
2.4.3 Crystallinity impact on conductivity
2.4.4 PDP influence on conduction
2.4.5 Interface effect
2.5 Space charge measurement
2.5.1 Setup description
2.5.1.1 Stimulus and measurement systems
2.5.1.2 Reduction of waves reflections
2.5.1.3 Signal resolution
2.5.1.4 Data processing
2.5.2 Test procedures
2.5.3 Glass transition influence on space charge
2.5.4 Crystallinity impact on space charge
2.5.5 PDP influence on space charge
3 Genetic model description
3.1 Electrical properties output
3.1.1 Electric field
3.1.2 Charge density
3.1.3 Permittivity and temperature
3.2 Development of evolution laws
3.2.1 Charge injection
3.2.2 Charge transport
3.2.3 Charge extraction
3.2.4 Charge trapping and detrapping
3.3 Evolution of the system over time
3.3.1 System evolution from evolution laws
3.3.2 Current density calculation
3.3.3 Step time calculation
3.4 Simulation results
3.4.1 Leakage current and space charge measurements
3.4.2 Current density dependency with electric history: space charge effect
3.4.3 Electrical properties dependency with electric field: SCLC
4 Genetic evolution of semi-crystalline polymer 103
4.1 Heterogeneous semicrystalline structure simulation
4.1.1 Distribution of random spherulites in the model
4.1.2 Distribution of random lamellae related to spherulite
4.1.3 Algorithm for crystalline fraction calculation
4.1.4 Local permittivity calculation from local crystalline fraction
4.2 Evolution laws development
4.2.1 Charge injection and transport
4.2.2 Charge trapping
4.2.3 Microstructure modification with temperature: annealing
4.3 Criticity of model parameters
4.3.1 Parameters for charge transport and injection
4.3.2 Parameters for charge trapping
4.4 Comparison with experiments
4.4.1 Current density behavior
CONTENTS
4.4.2 Space charge profile
4.4.3 Dependency with crystallinity
4.4.4 Glass transition temperature
5 Genetic evolution of undegassed insulation system
5.1 PDP distribution simulation
5.1.1 Distribution in the polymer
5.1.2 Impact on local permittivity
5.1.3 Influence of degassing time
5.2 Evolution law development
5.2.1 Genetic behavior of ACP
5.2.1.1 Diffusion of ACP from concentration gradient
5.2.1.2 Impact on electrical properties: deep traps for electrons
5.2.2 Genetic behavior of αCA
5.2.2.1 Diffusion of αCA from concentration gradient
5.2.2.2 Impact on electrical properties: ionic transport
5.2.3 Effect of macroscopic interfaces
5.3 Criticity of model parameters
5.3.1 Parameters for αCA genetic behavior
5.3.2 Parameters for ACP genetic behavior
5.4 Comparison with experiment
5.4.1 Impact of PDP in space charge distribution of XLPE
5.4.1.1 Effect of αCA
5.4.1.2 Effect of ACP
5.4.2 Impact of PDP in current density of XLPE
5.4.2.1 Degassing time
5.4.3 Interface effect
5.5 Summary
Conclusion
Bibliography




