(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Chapter 1∙ Introduction
1.1. Seismic hazard in the Tibetan Plateau
1.2. Earthquake cycle
1.2.1. Interseismic deformation
1.2.2. Coseismic deformation
1.2.3. Postseismic deformation
1.3. Previous geodetic observation and modelling of crustal deformation in the Tibetan Plateau
1.4. The aims of this thesis
1.5. References
Chapter 2∙ Geodetic datasets and data processing
2.1. GPS measurements and data processing
2.1.1. GPS measurement
2.1.2. GPS data processing
2.2. InSAR dataset
2.2.1. The Altyn Tagh fault
2.2.2. The Haiyuan fault
2.2.3. The Xianshuihe fault
2.3. Geodetic data integration
2.3.1. How to consider vertical deformation
2.3.2. Methodology and data integration
2.3.3. Minor comments
2.4. References
Chapter 3∙ Measuring the crustal deformation along the Altyn Tagh fault using GPS and InSAR
3.1. Abstract
3.2. Introduction
3.3. Geodetic data and analysis
3.3.1. GPS measurements and data processing
3.3.2. Comparison of GPS and InSAR
3.4. Results
3.4.1. GPS velocity field
3.4.2. Corrections of the geodetic data for block-rotation
3.4.3. Modeling results
3.5. Discussion
3.5.1. Slow strain accumulation rate along the western Altyn Tagh fault
3.5.2. Do asymmetric patterns of interseismic velocity exist across the western Altyn Tagh fault?
3.5.3. High spatial resolution crustal deformation in the northwestern Tibet
3.6. Conclusions
3.7. References
Chapter 4∙ Surface creep on the Haiyuan fault system, northeastern Tibet, constrained from GPS and InSAR
4.1. Abstract
4.2. Introduction
4.3. Geodetic data
4.3.1. GPS data and processing
4.3.2. InSAR data
4.3.3. Geodetic data comparison and combination
4.4. Modeling strategy
4.4.1. Interseismic horizontal GPS velocities
4.4.2. Combined GPS-InSAR inversion
4.5. Results
4.5.1. GPS velocity profile fitting
4.5.2. Fault creep from the restored InSAR
4.5.3. Block modeling of the GPS and restored InSAR
4.6. Discussions
4.6.1. Shallow creep segments along the Laohushan fault
4.6.2. Mechanism of shallow fault creep along the Laohushan fault
4.6.3. The correlation between fault creep and the M~8 1920 Haiyuan earthquake
4.6.4. Earthquake scenarios along the Haiyuan fault system
4.7. Conclusions
4.8. References
Chapter 5∙ Heterogeneous interseismic coupling along the Xianshuihe-Xiaojiang fault system, eastern Tibet
5.1. Abstract
5.2. Introduction
5.3. Data and model
5.3.1. GPS data processing
5.3.2. GPS data modeling
5.3.3. InSAR data and processing
5.4. Interseismic coupling results
5.5. Discussion
5.5.1. Fault behavior and moment budget along the XXFS
5.5.1.1. Overall characteristics
5.5.1.2. Northern Xianshuihe fault
5.5.1.3. Southern Xianshuihe fault
5.5.1.3. Anninghe-Zemuhe fault
5.5.1.4. Xiaojiang fault
5.5.1.5. Seismic potential along XXFS
5.5.2. Shallow creep along the Xianshuihe fault
5.5.3. Temporal variation in creep rate along the Xianshuihe fault (~30.2°N–30.4°N)
5.6. Conclusions
5.7. References
Chapter 6∙ Discussions and conclusions
6.1. Fault coupling and seismic potential
6.2. What we learn about the shallow fault creep in Tibet
6.2.1. Interseismic fault creep on crustal faults in Tibet
6.2.2. Very long-term creep/afterslip on crustal faults in Tibet
6.2.3. The role of shallow creeping in seismic behavior
6.3. What we learn about the geodetic data
6.4. Future work
6.5. References
Appendix A-Appendix for Chapter 3
Appendix B-Appendix for Chapter 4
Appendix C-Appendix for Chapter 5



