(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 General Introduction
1.1 Geographical Context – The Mediterranean Basin
1.2 The HyMeX Program
1.3 Numerical Weather Prediction
1.3.1 The Beginning of Numerical Weather Prediction
1.3.2 Atmospheric Scales – Synoptic, Meso- and Microscale
1.4 The Physics of Heavy Precipitation Events
1.4.1 Convective Instability
1.4.2 Orography and its Effect on Air Flow and Precipitation
1.4.3 Heavy Precipitation Events in the Mediterranean
1.4.4 Heavy Precipitation Events over Corsica
1.5 Goals and Outline of this Thesis
2 Climatology of Rainfall on Corsica
2.1 The Climate of the Mediterranean
2.2 Methodology
2.2.1 EOFs and Principal Components
2.2.2 The k-means algorithm
2.3 Seasonal Distribution, Frequency and Composite Fields
2.4 EOFs
2.5 Clusters
2.6 Physical Interpretation of the Clusters
2.6.1 Mean Fields
2.6.2 Precipitation Distribution
2.7 Discussion
2.8 Conclusions
3 Numerical Tools and Used Observations
3.1 Meso-NH Simulations
3.1.1 Model Configuration
3.1.2 Simulation Ensembles
3.1.3 Experiments with Modified Orography
3.2 Observational Data and Comparison Methods
3.2.1 Precipitation – Surface Stations and Radar
3.2.2 Satellite Data
3.2.3 Radiosoundings
3.3 Statistical Methods
3.4 A Simple Cyclone Tracking Algorithm
4 Case 1: 4 September 2012 – A Quasi-Stationary Cyclone
4.1 Synoptic Situation
4.2 Observed Evolution
4.2.1 Satellite Images
4.2.2 Observed Precipitation
4.3 Initial Condition Ensemble
4.3.1 Spatial Distribution of 24 Hour Accumulated Precipitation .
4.3.2 Quantitative Precipitation Verification
4.4 Cyclone Tracks
4.5 Evolution of the HPE in the Reference Simulation
4.6 Sensitivity to Horizontal Grid Spacing
4.6.1 Impact on Precipitation Distribution
4.6.2 Convergence Zones
4.7 Test over Flat Orography
4.8 Conclusions
5 Case 2: 31 October 2012 (IOP 18) – A Fast Moving Cyclone
5.1 Synoptic Situation
5.2 Observed Evolution
5.2.1 Satellite Images
5.2.2 Observed Precipitation
5.3 Initial Condition Ensemble
5.3.1 Spatial Distribution of 24 Hour Accumulated Precipitation .
5.4 Quantitative Precipitation Verification
5.5 Cyclone Tracks
5.6 San Giuliano Radiosoundings
5.7 Evolution of the HPE in the Reference Simulation
5.8 High Resolution Simulation
5.8.1 Impact on Precipitation Distribution
5.9 Test over Flat Orography
5.10 Conclusions
6 Case 3: 23 October 2012 (IOP 15c) – A Highly Localized Convec- tive Event
6.1 Synoptic Situation
6.2 Observed Evolution
6.2.1 Satellite Images
6.2.2 Observed Precipitation
6.3 Predictability and Sensitivity to Input Data Set and Initialization Time
6.4 High Resolution Simulations
6.4.1 Qualitative Comparison and Evolution of the HPE
6.4.2 Impact of the Mixing Length Formulation
6.5 Sensitivity to physical parametrizations
6.6 Physical Process Study
6.6.1 Analysis Departures
6.6.2 Role of the Corsican Orography
6.6.3 Role of the Gap Flows
6.7 Quantitative Precipitation Verification
6.8 Conclusions
7 Conclusions and Outlook
7.1 Results
7.1.1 Climatology and Clustering
7.1.2 Results of the Case Studies
7.2 Outlook

