Definition of entropic rubber elasticity

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 INTRODUCTION AND CHAPTERS ORGANIZATION
1.1 INDUSTRIAL CONTEXT AND SCIENTIFIC QUESTION OF THE STUDY
1.2 ORGANIZATION OF THE STUDY
1.3 NOTE ON THE ADOPTED NOMENCLATURE
1.4 REFERENCES
2 ELASTOMERS
2.1 MAIN PROPERTIES OF ELASTOMER
2.2 DEFINITION OF ENTROPIC RUBBER ELASTICITY
2.3 STATISTICAL THEORY
2.4 VISCOELASTIC BEHAVIOUR OF ELASTOMERS
2.5 REFERENCES
3 FILLED RUBBERS
3.1 POLYMER MATRIX: SBR
3.2 VULCANIZATION
3.3 FILLER SYSTEM
3.4 DISSIPATIVE MECHANISMS IN FILLED RUBBERS
3.5 STRAIN INDUCED CRYSTALLIZATION
3.6 NANO-CAVITATION
3.7 CONCLUDING REMARKS
3.8 REFERENCES
4 THERMOPLASTIC ELASTOMERS
4.1 HISTORICAL SURVEY AND GENERIC CLASSIFICATION
4.2 MORPHOLOGY OF TPU
4.3 THERMODYNAMIC OF PHASE SEPARATION
4.4 STRENGTH OF TPU AND DEFORMATION MECHANISMS
4.5 INELASTICITY OF TPU
4.6 CONCLUDING REMARKS
4.7 REFERENCES
5 FRACTURE AND FATIGUE IN SOFT MATERIALS
5.1 BRIEF INTRODUCTION TO LINEAR ELASTIC FRACTURE MECHANIC
5.2 FROM LEFM TO FRACTURE MECHANIC OF SOFT MATERIALS
5.3 CYCLIC FATIGUE
5.4 STRATEGY TO IMPROVE FATIGUE RESISTANCE IN SOFT MATERIALS
5.5 CONCLUDING REMARKS
5.6 REFERENCES
6 CYCLIC FATIGUE IN SBR: THE ROLE OF CRACK TIP
6.1 ABSTRACT
6.2 INTRODUCTION
6.3 MATERIALS AND METHODS
6.4 RESULTS
6.5 CYCLIC FATIGUE TESTS
6.6 MULTI-SCALE CRACK TIP OBSERVATION
6.7 EXTENDED DISCUSSION
6.8 CONCLUSIONS
6.9 SUPPLEMENTARY INFORMATION
6.10 ACKNOWLEDGEMENTS
6.11 REFERENCES
7 CYCLIC FATIGUE FAILURE OF TPU
7.1 ABSTRACT
7.2 INTRODUCTION
7.3 MATERIALS AND METHODS
7.4 MATERIALS CHARACTERIZATION
7.5 DISCUSSION
7.6 CONCLUSION
7.7 ACKNOWLEDGEMENTS
7.8 REFERENCES
8 MECHANICAL PROPERTIES OF SOFT TPU AND STRAIN INDUCED STRENGTHENING
8.1 ABSTRACT
8.2 INTRODUCTION
8.3 MATERIALS AND METHODS
8.4 MECHANICAL TESTING AND STRUCTURAL INVESTIGATIONS
8.5 DAMAGE ANALYSIS IN CYCLIC LOADING
8.6 DISCUSSION ON THE DIFFERENCES BETWEEN TPU AND SBR
8.7 CONCLUSIONS
8.8 ACKNOWLEDGEMENTS
8.9 REFERENCES
9 SELF-ORGANIZATION AT THE CRACK TIP AND CYCLIC FATIGUE IN TPU
9.1 ABSTRACT
9.2 INTRODUCTION
9.3 MATERIALS AND METHODS:
9.4 RESULTS
9.5 DIFFERENCES BETWEEN MICROSTRUCTURE AT BULK AND CRACK TIP
9.6 DISCUSSION
9.7 CONCLUSION
9.8 ACKNOWLEDGMENTS
9.9 REFERENCES
9 EXTENDED SUPPLEMENTARY INFORMATION
9.1 X-RAY ANALYSIS
9.2 STRAIN-INDUCED STRUCTURAL CHANGES
9.3 RESIDUAL CRYSTALLINITY IN UNIAXIAL STRAINED TPU_XTAL
9.4 CYCLIC FATIGUE METHOD B
10 GENERAL CONCLUSION AND PROSPECTS
10.1 FINAL REMARKS AND FUTURE PERSPECTIVES
10.2 REFERENCES
ANNEXES
1. FTIR ANALYSIS
2. TOUGHNESS: EFFECT OF TEMPERATURE AND STRAIN RATE
1.1 EXPERIMENTAL CONDITIONS
3. CRACK EXTENSION AND BLUNTING AT HIGH STRETCH RATE
4. CREEP AND STRESS RELAXATION
5. REFERENCES

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *