Doubly negative property in an asymmetric double-sided pillared metamaterial

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Doubly negative property in double-sided pillared metamaterials 
1.1 Introduction
1.2 Single negative property in single-sided pillared metamaterials
1.2.1 Lamb waves in a periodic structure
1.2.2 Negative effective mass density
1.2.3 Negative effective shear modulus
1.3 Doubly negative property in an asymmetric double-sided pillared metamaterial
1.3.1 Doubly negative property in merged structure
1.3.2 Enlargement of the double-negative branch
1.3.3 Polarization-filter behavior
1.3.4 Mode conversion phenomenon
1.3.5 Pillared metamaterial with chirality
1.4 Doubly negative property in a symmetric double-sided pillared metamaterial
1.4.1 Occurrence of isolated negative-slope branch
1.4.2 Formation of the double-negative branch
1.4.3 Evolution of the double-negative branch against the geometric parameters
1.5 Applications of doubly negative property
1.5.1 Refraction at the outlet of a prism-shaped supercell
1.5.1.1 Asymmetric single-sided pillared metamaterial supercell
1.5.1.2 Symmetric double-sided pillared metamaterial supercell
1.5.2 Cloaking effect in a rectangular supercell with void
1.5.2.1 Chiral asymmetric double-sided pillared metamaterial supercell
1.5.2.2 Symmetric double-sided pillared metamaterial supercell
1.6 Conclusion
2 Topological transport of Lamb waves in pillared phononic crystals 
2.1 Introduction
2.2 Constructing a single Dirac cone and a double Dirac cone
2.3 Topological transport in an asymmetric double-sided PPnC
2.3.1 Artificially folding and polarization-dependent propagation
2.3.2 Emulating QVHE
2.3.2.1 Topological phase transition
2.3.2.2 Valley-protected edge states
2.4 Topological transport in a symmetric double-sided PPnC
2.4.1 Occurrence of the Dirac cones and its evolution against the height of the pillars
2.4.2 Emulating QVHE
2.4.2.1 Topological phase transition
2.4.2.2 Valley-protected edge states of the antisymmetric dispersion curves
2.4.2.3 Valley-protected edge states of the symmetric dispersion curves
2.4.3 Emulating QSHE
2.4.3.1 Topological phase transition
2.4.3.2 Pseudospin-protected edge states
2.4.4 Pseudospin-valley combined edge states
2.5 Conclusion
3 Active control of transmission through a line of pillars 
3.1 Introduction
3.2 Eigenmodes of a line of pillars
3.3 Lamb waves reemitted by a line of pillars
3.4 Control of the transmission through a line of pillars by introducing external sources
3.4.1 Line of pillars with separated modes
3.4.2 Line of pillars with superimposed modes
3.5 Conclusion
General conclusion and perspectives 
Bibliography

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *